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ABSTRACT
Segmenting  greenhouse  gases  from  hyperspectral  images  can  provide  detailed  information  regarding  their  spatial  distribution,
which  is  significant  for  the  monitoring  of  greenhouse  gases.  However,  accurate  segmentation  of  greenhouse  gases  is  a
challenging task due to two main reasons:  (1)  Diversity:  greenhouse gases vary in concentration,  size,  and texture;  (2)  Camou-
flage: the boundaries between greenhouse gases and the surrounding background are blurred. Existing methods primarily focus
on  designing  new  modules  to  address  the  above  challenges,  often  neglecting  the  design  of  the  upsampling  method  within  the
model, which is crucial for achieving accurate segmentation. In this work, we propose Gas-Aware Upsampling (GasUpper), a novel
and efficient upsampling method tailored for greenhouse gas segmentation. Specifically, we first generate a coarse segmentation
mask during the upsampling process. Based on the roughly segmented gas and background, we then extract the global features of
the  gas  and  combine  them  with  the  original  features  to  obtain  de-camouflaged  feature  map  that  include  both  the  global
characteristics  of  the  gas  and  the  local  details  of  the  image.  This  de-camouflaged  feature  map  serves  as  the  foundation  for
subsequent  point  sampling.  Finally,  we  utilize  the  de-camouflaged  feature  map  to  generate  upsampling  coordinate  offsets,
enabling  the  model  to  adaptively  adjust  the  sampling  regions  based  on  the  content  during  the  sampling  process.  We  conduct
comprehensive  evaluations  by  replacing  the  upsampling  method  in  various  segmentation  approaches  with  GasUpper  on  two
hyperspectral  datasets.  The  results  indicate  that  GasUpper  consistently  and  significantly  enhances  the  performance  across  all
segmentation  models  (0.08%–9.44%  Intersection  over  Union  (IoU),  0.47%–6.26%  Accuracy),  outperforming  other  upsampling
methods.
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C urrently,  the  global  environmental  situation  is  becoming
increasingly severe, and extreme weather events caused by
climate  change  are  increasing,  including  heat  waves,

floods,  droughts,  and  wildfires[1].  These  phenomena  pose
significant  threats  to  human  lives  and  livelihoods,  resulting  in
substantial  human,  economic,  and  environmental  losses.
Researches[2, 3] indicate  that  the  release  of  greenhouse  gases  like
carbon  dioxide,  methane,  and  nitrous  oxide  plays  a  key  role  in
driving  these  environmental  and  climatic  disruptions.  Therefore,
effectively  monitoring  and  measuring  these  greenhouse  gas
emissions  has  become  a  crucial  topic  in  environmental  science
and technology research[4].

Hyperspectral  image,  with  its  excellent  spectral  resolution  and
rich  band  information,  can  capture  the  unique  spectral
characteristics  of  greenhouse  gases.  Consequently,  leveraging  the
abundant  spectral  information  within  hyperspectral  images  to
segment  greenhouse  gases  provides  a  novel  pathway  for
monitoring  their  emissions[5-7].  It  is  a  challenging  task,  however,
due  to  two  major  reasons.  Firstly,  influenced  by  atmospheric
conditions  and  environmental  factors,  as  well  as  the  varying
chemical  properties  and sources  of  greenhouse  gases,  these  gases
often  typically  exhibit  different  distributions  in  hyperspectral
images,  such  as  concentrations,  size,  and  texture,  as  shown  in

Fig.  1a.  The second is  the camouflage effect  of  greenhouse gases.
Under  conditions  of  low  gas  concentrations  or  specific  lighting
and  meteorological  influences,  greenhouse  gases  often  exhibit
spectral features, textures, and morphologies that seamlessly blend
into the environmental  backdrop in images,  as shown in Fig.  1b.
Especially  in  urban  environments,  shadows  and  reflections  from
buildings, as well as complex terrains, produce features similar to
those  of  greenhouse  gases,  causing  the  boundaries  between
greenhouse  gases  and  the  background  to  become  blurred  and
indistinct, making them difficult to identify. These issues result in
the inaccurate segmentation of greenhouse gases.

While  numerous  methodologies  have  focused  on  refining
modules to address the above challenges,  they have inadvertently
neglected  the  significance  of  upsampling  operations[8-10].  Feature
upsampling  holds  a  pivotal  role  in  modern  hyperspectral  image
segmentation models. Firstly, upsampling is crucial for resolution
and spatial  information recovery.  The  upsampling  operation  can
gradually  restore  the  low-resolution  feature  maps  output  by  the
encoder  module  to  the  original  image  resolution,  enabling  the
decoder to produce segmentation results with clear contours and
accurate  positions[11-14].  Secondly,  in  the  decoder  module,
upsampling  operations  typically  upsample  low-resolution  feature
maps to high resolution to fuse them with feature maps from the 
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encoder  module,  thereby  fully  leveraging  feature  information  at
different  levels[15-18].  The  most  widely  used  feature  upsampling
operators  are  the  nearest  neighbor  and  bilinear  interpolations,
which determine new features according to the distance of spatial
distance.  However,  nearest  neighbor  and  bilinear  interpolations
only consider sub-pixel neighborhoods, failing to capture the rich
semantic  information  of  the  gas  which  is  usually  regionally
distributed on images. Some other learnable upsamplers introduce
learnable  parameters  in  upsampling.  For  example,  the
deconvolution[19] layer  works  as  an  inverse  operator  of  a
convolution  layer,  which  learns  a  set  of  instance-agnostic
upsampling kernels. However, the deconvolution operator applies
the  same  kernel  over  the  entire  image  regardless  of  content,

limiting  its  ability  to  distinguish  greenhouse  gases  from  the
surrounding  environment.  Pixel  shuffle[20] utilizes  convolution  to
increase the number of preceding channels and then reshapes the
feature  maps  to  enhance  resolution,  but  it  also  struggles  with  a
fixed  upsampling  pattern.  Overall,  the  aforementioned
upsampling methods employ fixed patterns to process all  regions
uniformly,  lacking  the  capability  to  perform  adaptive  processing
based on distinctions between objects and background, as shown
in Fig.  2.  This  limitation  becomes  particularly  evident  when
dealing  with  hyperspectral  image  segmentation,  where  fine-
grained  discrimination  between  greenhouse  gases  and  their
surroundings  is  crucial.  Camouflaged  greenhouse  gases  often
blend  seamlessly  into  their  backgrounds,  necessitating  an
upsampling  approach  that  can  dynamically  adapt  to  the  subtle
differences  in  textures,  colors,  and  shapes  that  differentiate  gases
from their environment.

To  overcome  the  aforementioned  limitations,  this  paper
proposes  a  novel  feature  upsampling  method  called  Gas-Aware
Upsampling (GasUpper), which enhances the distinguishability of
gas features and background features and dynamically adjusts the
upsampling  areas  based  on  image  content  to  improve
segmentation accuracy.  The working mechanism of  GasUpper is
illustrated  in Fig.  2.  Specifically,  GasUpper  first  distinguishes
between  the  target  (gas-containing  regions)  and  background
regions during the upsampling process and enhances the features
of  both  to  generate  the  de-camouflaged  feature  map.  The
enhancement  of  gas  region  features  helps  the  model  better
recognize  the  targets  by  amplifying  their  prominent  features.
Meanwhile,  the  enhancement  of  background  features  aids  in
reducing  mis-segmentation  and  mitigating  the  interference  from
background  noise.  This  approach  significantly  enhances  the
distinguishability  between  the  greenhouse  gas  regions  and  the
background.  Then,  a  dynamic  adaptive  sampling  method  is
introduced  to  process  the  de-camouflaged  feature  map  features,
which  generates  adaptive  upsampling  coordinate  offset  values

 

(a) (b)

Fig. 1    Examples  of  greenhouse  gases  in  hyperspectral  images.  We  select
three  spectral  bands  from  the  hyperspectral  images  for  visual  display.
(a)  Greenhouse  gases  with  different  spatial  distributions.  (b)  Greenhouse
gases with blurred boundaries against the surrounding environment.
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Fig. 2    Illustration  of  GasUpper  working  mechanism.  Compared  to  interpolation-based  upsampling  methods  with  fixed  sampling  rules,  GasUpper  can
dynamically adjust the sampling regions based on image content.
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based  on  varying  input  features.  Unlike  traditional  methods  that
rely  on  fixed  sampling  patterns,  GasUpper  can  represent  the
distribution  of  gas,  and  magnify  and  capture  the  differences
between gas regions and background regions, enabling the model
to better predict segmentation results.

To  validate  the  effectiveness  of  GasUpper,  we  conducted
extensive  experiments  on  two  benchmark  datasets.  The  results
demonstrate  that  GasUpper  outperforms  traditional  upsampling
methods,  achieving  remarkable  improvements  in  segmentation
accuracy. Specifically, GasUpper can improve the performance of
segmentation  models  by  up  to  9.44%  Intersection  over  Union
(IoU)  on  the  industrial  plume  feature  dataset[21],  and  by  up  to
6.26%  Accuracy  on  the  power  generation  dataset[22].  The
significant improvements achieved demonstrate that GasUpper is
an efficient feature upsampling method with the potential to serve
as a foundation for future research.

In summary, this paper makes the following contributions:
● We propose a novel feature upsampling method, GasUpper,

specifically  designed  for  greenhouse  gas  segmentation.  At  each
position,  GasUpper  can  leverage  the  enhanced  content
information  to  predict  the  upsampling  coordinate  offset  values,
achieving more accurate segmentation masks.
● We  introduce  two  key  modules  for  GasUpper:  Camouflage

Removal  Module  (CRM)  and  Gas-Aware  Adaptive  Point
Sampling Module  (GAPSM).  Specifically,  CRM captures  clues  of
greenhouse gases camouflaged in the environment by combining
global  gas  features  with  local  detailed  information,  thereby
achieving  camouflage  removal  for  greenhouse  gases.  GAPSM
utilizes  the  de-camouflaged  feature  map  to  generate  adaptive
sampling  coordinate  offset  values,  which  guide  the  upsampling
process.
● Through  extensive  experiments,  we  demonstrate  that

GasUpper  substantially  improves  segmentation  accuracy
compared  with  other  upsampling  methods,  e.g.,  9.44%  IoU
improvement on the industrial plume feature dataset, making it a
promising upsampling method. 

1    Related Work
 

1.1    Hyperspectral image segmentation
The field of hyperspectral image segmentation has seen significant
advancements  in  recent  years.  Early  efforts,  such  as  the  edge-
embedded  marker-based  watershed  algorithm  proposed  by  Li  et
al.[23], utilized edge information to enhance segmentation accuracy
and boundary precision. This approach was further refined by the
same  group  with  an  improved  watershed  algorithm  that
incorporated pre- and post-processing techniques to mitigate over-
segmentation issues[24]. As deep learning progressed, Kampffmeyer
et al.[25] designed a deep convolutional neural network tailored for
semantic  segmentation  in  hyperspectral  images,  focusing  on
accurate  mapping  in  urban  environments  while  addressing  class
imbalance  challenges.  Building  on  this,  Su  and  Zhang[26]

introduced methods  to  evaluate  segmentation  performance  from
both local and global perspectives, providing quantifiable insights
into error distribution. FusionNet[27] further advanced this domain
by combining sea-land segmentation with ship detection through
deep  convolutional  networks,  integrating  edge-aware
regularization  to  refine  segmentation  outcomes.  Innovations
continued  with  Kemker  et  al.[28],  who  developed  a  novel
framework  for  hyperspectral  image  segmentation,  employing
synthetic data for network initialization to counter the challenges
of  label  scarcity.  Rusyn et  al.[29] made  significant  contributions  by

addressing  the  specific  challenge  of  cloud  forecasting  through
cloud image segmentation techniques. Motiyani et al.[30] proposed
a  new  clustering  method  that  utilizes  k-means  to  sequentially
perform  feature  reduction,  segmentation,  and  clustering  on
hyperspectral  images,  aiming  to  improve  segmentation  accuracy.
Medellin  et  al.[31] introduced  a  new  method  that  combines  the
Arbitrary  Segment  Modeling  (M-SAM)  with  the  Spectral  Angle
Mapping  (H-SAM)  algorithm  for  hyperspectral  image  semantic
segmentation.  Wang  and  Zhang[32] proposed  a  multi-scale
differential  feature  optimization  network  that  leverages  spatial
information relationships and high-low semantic features between
bi-temporal images to improve recognition accuracy.

To  further  enhance  segmentation  accuracy  and  efficiency  in
high-resolution  imagery,  various  innovative  strategies  have  been
proposed. Convolutional networks have been effectively leveraged
to  extract  subtle  features  and  define  precise  boundaries,  as
demonstrated  in  dynamic  multicontext  segmentation[33] and
boundary  loss  optimization[34].  Additionally,  novel  deep  learning
architectures  such  as  ResUNet-a[35] and  HQ-ISNet[36] have  been
specifically  designed  to  address  the  complexities  of  instance
segmentation  in  hyperspectral  images.  The  incorporation  of
attention  mechanisms,  as  exemplified  by  studies  like  MANet[37]

and  UNetFormer[38],  has  significantly  improved  the  capture  of
both local and global contextual information, leading to enhanced
segmentation  outcomes.  Pan  et  al.[39] has  designed  a  set  of  Deep
Dual-Resolution Networks (DDRNets) for real-time and accurate
semantic  segmentation,  which  consist  of  a  deep  dual-resolution
backbone  and  an  enhanced  low-resolution  context  information
extractor.

These  works  have  also  tackled  critical  issues  such  as  sparse
annotations[40],  domain  shifts[41],  and  the  need  for  real-time
processing[38],  thus  advancing  the  capabilities  of  semantic
segmentation  techniques  in  hyperspectral  imaging.  Despite  these
advancements,  many  existing  hyperspectral  image  segmentation
methods  still  rely  on  conventional  upsampling  techniques  with
fixed sampling rules.  Unlike other segmented targets,  greenhouse
gases  in  hyperspectral  images  exhibit  diverse  and  camouflaged
spatial properties, requiring a more carefully designed approach to
upsample to achieve precise and reliable results. 

1.2    Upsampling methods
Upsampling is a critical technique in signal and image processing,
which is mainly used to upscale image data from lower to higher
resolutions.

In deep learning and computer vision, it plays a pivotal role in
pixel-level  tasks  such  as  image  segmentation,  aiming  to
reconstruct  high-resolution  images  or  feature  maps  from  their
lower-resolution versions.  Traditional  upsampling methods,  such
as  interpolation,  rely  on  fixed  algorithms  that  perform  uniform
interpolation  between  pixel  points  to  increase  resolution.  These
approaches often disregard the semantic content of the images or
feature  maps,  focusing  solely  on  mathematical  manipulation  of
pixel values[42]. While methods like deconvolution[19] can introduce
undesirable  checkerboard artifacts[43],  and unpooling techniques[44]

can  result  in  the  loss  of  essential  positional  information,  thereby
hindering accurate reconstruction of original data.

In  recent  years,  dynamic  upsampling  approaches,  including
CARAFE[45],  FADE[46],  SAPA[47],  and  DySample[48] have  gained
traction for their ability to incorporate learning-based adjustments
during  upsampling.  These  advanced  methods  preserve  finer
details while reducing noise and inconsistencies.

Despite  their  advantages,  most  existing  upsampling  methods
treat  objects  and  backgrounds  uniformly,  which  will  lead  to
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blurred edges in the resulting images. Our objective is to develop
an  upsampling  method  that  differentiates  between  gases  and
backgrounds,  providing sharper  and more distinct  boundaries  in
areas with rich edge information. 

2    Methodology
 

2.1    Overview
Greenhouse  gases  in  atmospheric  environments  often  exhibit
diverse and camouflaged properties, varying shapes, and indistinct
boundaries,  making  precise  segmentation  extremely  challenging.
While  existing  methods  have  made  significant  strides  in
addressing  these  challenges,  they  often  rely  on  fixed  upsampling
patterns,  which  can  struggle  to  adapt  to  the  subtle  differences
between  gas  regions  and  their  surroundings.  To  overcome  these
limitations,  we introduce GasUpper, a novel upsampling method
that  dynamically  adjusts  the  sampling  process  based  on  the
content  of  the  input  feature  map,  enabling  more  accurate  and
refined gas segmentation. The key innovation of GasUpper lies in
its two-stage adaptive mechanism: the CRM distinguishes between
gas-containing  regions  and the  background by  combining  global
gas  features  with  local  image  details,  while  the  GAPSM
dynamically adjusts the sampling regions based on the content of
the input feature map. This adaptive approach enables GasUpper
to capture subtle differences in texture, color, and shape, which are
often overlooked by conventional methods, making it particularly
effective  in  addressing  the  challenges  of  greenhouse  gas
segmentation,  such  as  the  camouflage  effect  and  diverse  spatial
distributions  of  gases  in  hyperspectral  images.  By  combining
global  context  with  local  detail  and  introducing  a  dynamic
adaptive sampling mechanism, GasUpper represents a significant
advancement over existing upsampling methods, offering a more
accurate solution for hyperspectral image segmentation.

The overall framework of GasUpper is shown in Fig. 3. We first
feed  the  original  image  into  the  encoder  to  generate  an  initial
feature map. Next, we process the feature map through the CRM
to  produce  a  global  feature  map.  Then  we  combine  the  global
feature  map  with  the  original  image  feature  through  a  residual
connection  to  result  in  a  de-camouflaged  feature  map  that
integrates  both  the  global  context  of  greenhouse  gas  and  the
background  feature,  as  well  as  the  local  details  of  the  original
image. CRM allows the model to dynamically distinguish whether
the  sampling  area  corresponds  to  the  background  or  the  gas  of
interest.  Finally,  we  upsample  the  original  image  feature  to  the
target size by the GAPSM. 

2.2    Camouflage removal module
Upsampling is a process of gradually restoring spatial information

by enhancing the resolution of an image to recover more details.
However,  due  to  the  often  blurred  boundaries  between
greenhouse  gases  and  their  surrounding  environment,  confusion
can easily arise during the upsampling process, leading to a loss of
detail  in  the  enlarged  image  of  greenhouse  gases.  Therefore,  to
better  restore  the  details  in  the  image  after  upsampling,  it  is
necessary to accurately distinguish between greenhouse gases and
the background during this process.

XD

X
C×H×W 1× 1

The  CRM  is  designed  to  distinguish  between  camouflaged
greenhouse  gas  and  background  regions,  generating  a  de-
camouflaged  feature  map  that  integrates  both  gas  and
background  features.  Specifically,  given  a  feature  map  of  size

,  we  first  use  a  convolution  layer  to  predict  a
segmentation  mask,  where  the  mask  has  two  channels
representing  gas  and background,  respectively.  To  determine  the
probability of each pixel belonging to gas or background, we apply
a  softmax  normalization  to  the  mask  to  generate  a  probability
map. This process can be expressed as

M= Softmax(f(X)) (1)

M ∈ R2×H×W

f(·)
where  denotes  the  computed  segmentation  mask
and  represents the convolution function.

M
MG MB

τ

τ τ

τ

Once the segmentation mask  is generated, it is decomposed
into a gas mask  and a background mask  in the channel
dimension.  However,  at  this  stage,  both  the  gas  and background
masks  contain  continuous  values.  To  further  clarify  whether  the
region  is  gas  or  background,  we  apply  a  threshold  to  binarize
these  probabilities,  identifying  confident  gas  and  background
localizations for enhancement while leaving uncertain pixels near
boundaries for subsequent processing. The choice of the threshold

 is crucial for effective upsampling. If  is set excessively high, gas
regions with strong camouflage characteristics may be overlooked.
Conversely,  a  low  could  introduce  noise  by  misclassifying  the
background as gas. Through experiments, we determined that the
optimal threshold for effectively balancing these trade-offs is 0.75.

VG VB

Due to the blurred boundary between greenhouse gases and the
background in hyperspectral images, global features are needed to
provide  overall  semantic  information,  such  as  spectral  response,
intensity distribution, and spatial proportions. These features help
the  model  distinguish  between  gas  and  background  regions.  To
achieve  this,  we  introduce  global  average  pooling  to  generate
global feature vectors. We first apply a weighting operation to the
feature map, reducing noise and enhancing the model’s attention
on  distinguishing  between  gas  and  background.  And  then,  we
average the weighted feature  map across  spatial  dimensions.  The
approach  extracts  comprehensive  gas  and  background  features
without  being  influenced  by  spatial  positioning.  The  resulting
global feature vectors are denoted as  and , which represent
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Fig. 3    Overall  framework  of  the  GasUpper.  GasUpper  comprises  two  main  components:  the  CRM  and  the  GAPSM.  The  CRM  enhances  feature  maps  by
distinguishing gas from background, while the GAPSM adjusts the upsampling grid based on pixel characteristics.
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the  global  features  of  the  entire  gas  and  background  regions,
respectively:

VG = GAP(X⊙MG) (2)

VB = GAP(X⊙MB) (3)

GAP(·)where  represents the global average pooling operation.

XG

Next,  the  binarized  gas  mask  and  background  mask  are
combined with the respective gas and background feature vectors
to  generate  the  global  feature  map .  This  operation  enhances
feature information by emphasizing the most relevant regions:

XG = (VG · (MG > τ)+VB · (MB > τ)) (4)

τwhere  is the threshold.

XG X
XE

Subsequently,  to  enhance  gradient  flow  and  inject  global
context information without losing the local details of the original
image, we apply a residual connection between the global feature
map  and the original feature map  to produce an enhanced
feature map :

XE = X+XG (5)

XD

XE

X

Given  the  camouflage  characteristics  of  greenhouse  gases  in
natural atmospheric environments, we further enhance the feature
representation  to  generate  a  de-camouflaged  feature  map  by
concatenating  the  feature  map  with  the  original  feature  map

.  This  operation  enables  the  model  to  adaptively  select  and
combine  features  across  multiple  levels,  preserving  local  detail
information.  However,  this  approach  increases  the  channel
dimension,  so  we  apply  a  fusion convolution layer  to  reduce  the
number  of  channels  and  flexibly  adjust  the  weights  of  different
feature  channels,  achieving  a  more  adaptive  feature  fusion.  The
entire process can be expressed by

XD = F(concat(X,XE)) (6)

concat(·)
F

where  represents  concatenation  along  the  channel
dimension and  denotes the convolutional layer used to fuse the

concatenated features. 

2.3    Gas-aware adaptive point sampling module
XD

t
C 2s2 XD

O 2t2 ×H×W
O

2× tH× tW O
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After  obtaining  the  de-camouflaged  feature  map  from  the
CRM,  we  need  to  generate  the  sampling  point  set  for  the  target
image  based  on  the  feature  map  as  shown  in Fig.  4.  Given  an
upsampling  factor ,  we  first  use  a  linear  layer  with  input  and
output channel sizes  and  on the feature map  to compute
offset  values  for  each  pixel.  To  constrain  the  magnitude  of  the
offset, we apply a sigmoid function to compress the output values
to the range [0,  1].  These values are then scaled by 0.5 to further
limit  the  offset  range  to  [0,  0.5]  to  ensure  that  sampling  points
remain  within  a  reasonable  vicinity.  This  operation  produces  an
offset  map  with  dimensions ,  and  then  a  pixel
shuffle  operation  is  applied  to  reshape  into  dimensions

. Next, the offset map  is combined with the initial
sampling  positions  grid  of  the  feature  map  to  generate  the
final set of sampling points . The entire process can be expressed
as

O= Sigmoid(Linear(XD))×0.5 (7)

S=O+G (8)

S ∈ R2×tH×tW

X′ ∈ RC×tH×tW

S
X ∈ RC×H×W

The  sampling  set  represents  the  position  of  each
pixel in the target feature relative to the input feature. However, to
generate  the  target  size  image  feature ,  we  utilize  a
grid  sampling  function  that  maps  the  coordinates  in  to  the
corresponding  positions  in  the  input  feature .  For
each  sampling  position,  the  value  is  computed  using  bilinear
interpolation,  which  estimates  the  value  by  considering  the  four
nearest integer pixel values in the input feature.

X′
= GridSample(X,S) (9)

As  shown  in Fig.  5,  the  target  values  obtained  through  the
original  bilinear  upsampling  method  differ  significantly  from
those  generated  by  the  GAPSM’s  offset-based  bilinear
interpolation.  In  origin  bilinear  upsampling,  the  position  of  each

 

W
tW

tH

Target featureImage feature

H  Bilinear interpolation

Fig. 4    Illustration of interpolation based on sampling set generated by gas-aware adaptive point sampling. The yellow circles represent the original sampling
points, while the red triangles indicate the new sampling points.
 

(a) Origin  bilinear interpolation
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ω2Q12
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(b) Offset-based bilinear interpolation
Fig. 5    Comparison with bilinear interpolation upsampling method. Q represents the values at the four neighboring grid points, ω denotes the interpolation
weights corresponding to these grid points, and (x, y) indicates the sampling point.
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(x′,y′)
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target pixel is fixed and mapped to the original features based on a
regular  scaling ratio,  ignoring the relative  positional  relationships
of  neighboring  points .  The  sampling  points  are  solely
influenced  by  the  fixed  scaling  factor.  In  contrast,  the  new
sampling  point  generated  by  our  method  dynamically
adjust their weights  based on predicted offsets. This allows the
sampling process to adapt to the content of the input feature. 

2.4    Training and inference
Training  process. During  training,  since  decoders  typically  have
multi-layer structure, our method predicts a segmentation mask at
each  layer.  And  for  each  layer,  we  calculate  cross-entropy  loss,
which improves the quality of the masks and guides the model to
progressively  and  precisely  distinguish  between  gas  and
background. These individual losses are then aggregated to derive
the  final  training  loss,  utilizing  the  supervisory  signals  from  all
decoder layers. The loss calculation can be expressed as

Ltotal =
N

∑
i=1

LCE(Pi,Gi) (10)

N LCE(·, ·)
Pi

i Gi

where  represents  the  number  of  decoder  layers, 
denotes  the  cross-entropy  loss  function,  represents  the
prediction  result  of  the -th  layer,  and  represents  the  ground
truth segmentation mask.

Inference process. During inference, we utilize the parameters
learned  during  training  to  dynamically  generate  pixel-wise
sampling  coordinate  offsets  from  the  input  low-resolution
features.  And  then  adopt  the  adaptive  point  upsampling  to
produce the high-resolution output. 

3    Experiment
 

3.1    Datasets
Among the  available  public  datasets,  we choose  two high-quality
gas  segmentation  datasets:  the  Characterization  of  Industrial
Smoke Plumes from Remote Sensing Data (CISPRSD)[21] and the
Power Generation Data Set (PGDS)[22].

×

×

CISPRSD. This  dataset  was  collected  from  ESA’s  Sentinel-2
earth-observing  satellite  constellation[21].  Each  raster  image
contains  all  13  spectral-band channels  from the  calibrated  Level-
2A reflectances and is cropped to a dimension of 1200 meters on
each side, equivalent to 120 120 pixels. Low-resolution channels
are resampled to the highest available resolution (10 m/pixel). The
images are categorized into gas types for segmentation. Based on
the  methodology  of  Mommert  et  al.[21],  we  select  996  images  for
training and 214 images for testing, with both sets padded to a size
of 512 512 pixels.

×
×

×

PGDS. This  dataset  is  also  acquired  from  ESA’s  Sentinel-2
earth-observing  satellite  constellation[22].  Each  image  contains  13
spectral  bands  and  has  dimensions  of  either  120 120  pixels  or
300 300  pixels.  The  images  are  labeled  into  gas  categories  for
segmentation. Following the approach of Hanna et al.[22], we select
1498 images for training and 73 images for testing, with all images
padded to 512 512 pixels. 

3.2    Instantiation of GasUpper
To evaluate the effectiveness of our proposed method, we integrat
the  GasUpper  into  various  segmentation  models  and  conducted
extensive  experiments  on  CISPRSD  and  PGDS.  We  select  a
diverse set of recent and well-performing segmentation models for
comparison.  Each  model  is  individually  trained  and  finely  tuned

to  establish  robust  baselines,  ensuring  a  thorough  evaluation.
Specifically,  we  select  three  representative  models  from  CNN-
based  methods  and  two  representative  models  from  ViT-based
methods,  based  on  their  performance  metrics  and  architectural
diversity.  The  selection  provides  a  comprehensive  assessment  of
the  GasUpper  method  across  different  model  types.  We  replace
the  original  upsampling  methods  with  GasUpper  to  validate  its
effectiveness.

3× 3 2×2

U-Net  +  GasUpper. In  the  U-Net  model[49],  the  encoder
employs a layer-by-layer downsampling strategy to capture image
features  at  different  scales.  Specifically,  in  its  four  levels,  features
are first extracted using  convolutions, followed by  max
pooling operations to reduce the spatial dimensions of the feature
maps.  During  the  subsequent  upsampling  part,  the  feature  map
dimensions are gradually restored to their original sizes.

2×2

2

U-Net  employs  a  transposed convolution kernel  for  this
upsampling  strategy,  which  effectively  doubles  the  height  and
width  of  the  feature  maps,  restoring  them  to  their  original
dimensions. Finally, the upsampled feature maps are concatenated
with  the  corresponding  downsampled  feature  maps  to  recover
spatial information. Since the scale of each upsampling operation
in  U-Net  is  consistent,  we  can  directly  replace  the  four
upsampling  operations  in  the  U-Net  model  with  GasUpper,
setting  the  upsampling  scale  to .  This  ensures  that  the  feature
maps in each decoder stage are uniformly magnified by a factor of
two, achieving the same resolution as the corresponding encoder
stage feature maps. The process is illustrated in Fig. 6a.

1× 1

DeepLabv3  +  GasUpper. In  DeepLabv3+[50],  the  upsampling
component  is  enhanced  by  the  Atrous  Spatial  Pyramid  Pooling
(ASPP)  technology.  The  ASPP  module  processes  high-level
features,  which  are  then  reduced  in  dimension  using  a 
convolution.  These  features  are  upsampled  by  a  factor  of  four
using  bilinear  interpolation  and  fused  with  corresponding  low-
level  features  from  the  encoder.  Following  this,  an  additional
convolution layer refines the features, and the refined feature map
is  upsampled  again  to  the  original  input  size  using  bilinear
interpolation, producing a detailed segmentation map.

1× 1

To  improve  this  process,  we  replace  the  two  bilinear
interpolation upsampling operations with GasUpper, as shown in
Fig.  6b.  This  replacement  maintains  consistent  parameters  but
leverages  GasUpper’s  dynamic  and  precise  upsampling
capabilities.  The  first  replacement  occurs  after  the 
convolution,  dynamically  adjusting  the  upsampling  to  ensure
spatial  integrity  and  enhance  feature  map  quality.  The  second
replacement is at the final upsampling stage.

×

×

×

DDRNet  +  GasUpper. The  DDRNet[39] employs  a  dual-
resolution network, where the high-resolution branch maintains a
1/8  resolution  to  preserve  fine  details,  and  the  low-resolution
branch gradually reduces to 1/16, 1/32, and 1/64 to capture global
context.  Specifically,  the  low-resolution  features  are  progressively
upsampled  to  the  high-resolution  size  using  2  bilinear
interpolation.  In  both  the  high-resolution  branch  and  the  fused
feature map, 8  upsampling generates intermediate segmentation
predictions  for  training  supervision.  Finally,  the  fused  1/8
resolution  features  are  upsampled  8  to  the  original  input
resolution  for  the  final  segmentation  output.  As  shown  in
Fig.  6c,  we  replace  DDRNet’s  bilinear  upsampling  with
GasUpper,  while  maintaining  consistent  upsampling  factors  to
ensure comparability.

SegFormer + GasUpper. In contrast to U-Net, the SegFormer
model[51] upsampling procedure does not use a fixed scaling factor.
Instead,  it  incorporates  multi-scale  feature  fusion.  The  process
accepts  feature  maps  from four  different  scales,  originating  from
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(1/4, 1/8, 1/16, 1/32)

(1,2,4,8)

the  backbone .  Subsequently,  it  uses  bilinear
interpolation  to  upsample  these  feature  maps  to  the  size  of  the
initial  stage  (1/4  scale).  In  our  approach,  we  replace  the  original
bilinear interpolation upsampling with GasUpper. As illustrated in
Fig.  6d,  we  dynamically  set  the  target  scales  for  upsampling  to

,  resulting  in  feature  maps  that  are  upsampled  to  a
resolution of 1/4 of the original image size.

1× 1

2

Twins-PCPVT  +  GasUpper. The  Twins-PCPVT  model[52]

utilizes  a  Feature  Pyramid  Network  (FPN)[53],  which  consists  of
two  main  components:  a  down-up  path  and  a  top-down  path.
The  down-up path  extracts  hierarchical  features  through a  series
of  standard  convolutional  operations,  while  the  top-down  path
facilitates feature fusion via bilinear interpolation upsampling and
skip  connections.  Specifically,  bilinear  interpolation  is  employed
for  upsampling  to  align  the  dimensions  of  the  low-level  feature
maps.  Following  this,  a  convolution  adjusts  the  channel
numbers  to  ensure  consistency  between  the  upscaled  and  low-
level feature maps. Subsequently, element-wise addition is used for
feature  fusion.  As  illustrated  in Fig.  6e,  the  traditional  bilinear
interpolation  upsampling  can  be  seamlessly  replaced  with  the
GasUpper  method  without  additional  operations.  This
replacement  maintains  the  upsampling  scale  at ,  ensuring
consistency with previous scales. 

3.3    Implementation details
Experimental setup. We follow the training schedule outlined in
MMSegmentation[54].  For  a  fair  comparison  of  method
performance, all experiments are implemented with PyTorch and
run  on  RTX  3090  Ti.  The  training  involves  a  total  of 80 000
iterations.  We  utilize  the  SGD  optimizer,  configured  with  a
momentum of 0.9 and a weight decay of 0.0005. The batch size is
set to 4, and the initial learning rate is 0.001. Data augmentation is
applied by randomly scaling images between 0.5 and 2.0, followed
by  random  cropping  and  flipping.  Additionally,  image  edges  are
padded to ensure square input images.

Evaluation  metrics. To  clearly  demonstrate  the  segmentation
performance for gas regions, we evaluate the model using the IoU,
Accuracy (Acc),  F1-Score,  and Precision metrics  only for  the gas
regions, as recommended by Lu et al.[47] IoU measures the overlap
between the predicted and ground truth values, while Acc reflects
the  proportion  of  correctly  classified  pixels  out  of  the  total.  In
addition, the F1-Score, which balances precision and recall, is used

to  evaluate  the  model’s  ability  to  correctly  identify  gas  regions
while minimizing false positives and false negatives. Precision, on
the  other  hand,  quantifies  the  proportion  of  correctly  predicted
gas  pixels  relative  to  all  pixels  predicted  as  gas,  providing  insight
into  the  model’s  reliability  in  avoiding  false  detections.  These
metrics  collectively  offer  a  comprehensive  evaluation  of  the
model’s  segmentation  performance.  Furthermore,  to  assess
computational  efficiency  and  model  complexity,  we  measure
Floating  Point  Operations  (FLOPs)  and  Parameters  (Params),
which provide insights into the computational load and memory
usage during runtime. 

3.4    Experimental results
Results  of  the instantiation models. The performance results  of
the  GasUpper-based instance  models  evaluated  on the  CISPRSD
and  PGDS  datasets  are  comprehensively  presented  in Table  1.
Following the replacement of upsampling with GasUpper, the U-
Net  model  exhibits  a  substantial  improvement  across  both
datasets. On the CISPRSD dataset, U-Net with GasUpper achieves
a  5.09%  increase  in  IoU  and  a  5.26%  increase  in  Accuracy.
Similarly,  on  the  PGDS  dataset,  U-Net  with  GasUpper  shows  a
7.68%  improvement  in  IoU  and  an  8.16%  increase  in  Accuracy.
These  significant  improvements  underscore  the  efficacy  of
GasUpper  in  enhancing  the  segmentation  capabilities  of  the  U-
Net model, particularly in handling the complex and camouflaged
nature  of  greenhouse  gases  in  hyperspectral  images.  For  the
DeepLabv3+  model,  the  integration  of  GasUpper  also  yields
notable improvements.  These results  highlight  the adaptability  of
GasUpper to different model architectures.

The  SegFormer  model,  which  is  based  on  a  transformer
architecture,  also  benefits  significantly  from  the  integration  of
GasUpper.  On  the  CISPRSD  dataset,  SegFormer  with  GasUpper
achieves  a  5.57%  increase  in  IoU  and  a  6.66%  increase  in
Accuracy.  On  the  PGDS  dataset,  the  improvements  are  more
modest  but  still  significant,  with  a  0.73%  increase  in  IoU  and  a
1.62%  increase  in  Accuracy.  These  results  demonstrate  that
GasUpper is  not only effective in CNN-based models but also in
transformer-based architectures, which are increasingly popular in
modern  segmentation  tasks.  The  Twins-PCPVT  model,  which
utilizes a Feature Pyramid Network (FPN) for multi-scale feature
fusion,  also  shows  consistent  improvements  with  GasUpper.
Although  the  improvements  in  IoU  were  modest,  the  consistent
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gains  in  Accuracy  and F1-score  across  both datasets  suggest  that
GasUpper  enhances  the  model’s  ability  to  correctly  classify  gas
regions,  even  in  challenging  scenarios.  Finally,  the  DDRNet,
which  is  designed  for  real-time  and  accurate  semantic
segmentation,  also  benefits  from  the  integration  of  GasUpper.
These  improvements  not  only  validate  the  broad  applicability  of
GasUpper  across  different  model  architectures  but  also  highlight
its  potential  for  improving  the  performance  of  state-of-the-art
segmentation models.

Furthermore,  as  shown  in Table  1,  GasUpper  introduces
additional  FLOPs  and  parameters  compared  to  the  baseline
models.  For  instance,  in  the  U-Net  architecture,  GasUpper
increases  the  FLOPs  from  0.204×1012 to  0.214×1012 and  the
number of parameters from 28.99×106 to 32.60×106. Despite these
increases  in  computational  complexity,  the  performance
improvements  justify  the  additional  cost,  particularly  in
applications  where  accurate  segmentation  of  greenhouse  gases  is
critical.  For  example,  U-Net  with  GasUpper  achieves  a  5.09%
increase  in  IoU  and  a  5.26%  increase  in  Accuracy  on  the
CISPRSD dataset. The increased computational cost of GasUpper
can  be  attributed  to  its  dynamic  adaptive  sampling  mechanism
and the Camouflage Removal Module, which enhance the model’
s  ability  to  distinguish  between  gas  regions  and  complex
backgrounds.  While  these  modules  introduce  additional  FLOPs
and  parameters,  they  are  crucial  for  addressing  the  unique
challenges  of  greenhouse  gas  segmentation,  such  as  the
camouflage effect and blurred boundaries in hyperspectral images.

Comparison  with  other  upsampling  methods. In  order  to
thoroughly  evaluate  the  validity  of  our  proposed  GasUpper  in
comparison  to  several  widely  used  upsampling  techniques  in
hyperspectral  image  segmentation,  including  nearest  neighbor,
bilinear interpolation, transposition convolution, and pixel shuffle,
we  conduct  a  series  of  comprehensive  experiments  using  U-Net

and Twins as baseline models. Each of these upsampling operators
is systematically integrated into the U-Net and Twins to replace its
standard upsampling method, and the modified U-Net and Twins
models were trained and tested on the CISPRSD.

The  results  of  these  comparative  experiments  are  detailed  in
Table  2.  Our  proposed  GasUpper  method  outperforms  other
upsampling  operations  on  most  metrics.  Specifically,  in  the
context  of  U-Net,  GasUpper  achieved  an  IoU  of  73.03%,  which
represents  a  significant  improvement  over  the  other  methods.
Similarly,  when applied to the Twins model,  GasUpper delivered
an  IoU  of  76.31%,  outperforming  the  next  best  method  by  a
substantial margin.

In  addition  to  the  quantitative  improvements,  the  qualitative
results  presented  in Fig.  7 further  validate  the  advantages  of
GasUpper. The visual comparisons, conducted using U-Net as the
baseline model, demonstrate that GasUpper consistently generates
clearer and more accurate segmentation maps compared to other
upsampling  methods,  such  as  nearest  neighbor,  bilinear
interpolation, deconvolution, and pixel shuffle. As shown in Fig. 7,
GasUpper  effectively  reduces  mis-segmentation  errors,
particularly  in  regions  where  gas  plumes  overlap  with  complex
backgrounds,  such  as  urban  structures  or  natural  terrain.  For
instance,  in  cases  where  traditional  upsampling  methods  fail  to
distinguish between gas regions and background noise, GasUpper
successfully  identifies  and  isolates  the  gas  plumes  with  higher
precision. This is achieved through its dynamic adaptive sampling
mechanism,  which  adjusts  the  sampling  regions  based  on  the
content of the input feature map, thereby enhancing the model’s
ability  to  capture  subtle  differences  in  texture,  color,  and  shape
between  gas  regions  and  their  surroundings.  Furthermore,  the
visual results highlight GasUpper’s ability to preserve fine-grained
details in the segmentation maps, which is critical for applications
requiring high spatial accuracy, such as environmental monitoring

 

Table 1    Gas segmentation results on the CISPRSD and PGDS.

Backbone Dataset Method IoU (%) Acc (%) F1-score (%) Precision (%) FLOPs Params

U-Net-S

CISPRSD
U-Net[49] 67.94 76.17 80.91 86.28 0.204×1012 28.99×106

U-Net+GasUpper 73.03 (+5.09) 81.43 (+5.26) 84.41 (+3.50) 87.63 (+1.35) 0.214×1012 32.60×106

PGDS
U-Net[49] 61.24 66.87 75.96 87.92 0.204×1012 28.99×106

U-Net+GasUpper 68.92 (+7.68) 75.03 (+8.16) 81.60 (+5.64) 89.42 (+1.50) 0.214×1012 32.60×106

ResNet-50

CISPRSD
DeepLabv3plus[50] 73.02 79.64 84.41 89.78 0.177×1012 41.22×106

DeepLabv3plus+GasUpper 74.29 (+1.27) 86.72 (+6.63) 85.25 (+0.84) 83.83 (−5.95) 0.179×1012 76.19×106

PGDS
DeepLabv3plus[50] 74.15 80.89 85.16 89.89 0.177×1012 41.22×106

DeepLabv3plus+GasUpper 76.27 (+2.12) 83.36 (+2.47) 85.93 (+0.77) 91.91 (+2.02) 0.179×1012 76.19×106

DDRNet

CISPRSD
DDRNet[39] 75.07 81.62 85.76 90.34 5.735×106 4.729×109

DDRNet+GasUpper 76.30 (+1.23) 82.34 (+0.72) 86.56 (+0.80) 91.23 (+0.89) 5.889×106 5.132×109

PGDS
DDRNet[39] 74.25 79.65 85.22 91.64 5.735×106 4.729×109

DDRNet+GasUpper 74.71 (+0.46) 79.69 (+0.04) 85.52 (+0.30) 92.27 (+0.63) 5.889×106 5.132×109

MiT-B

CISPRSD
SegFormer[51] 62.86 73.11 77.19 81.75 8.116×109 3.73×106

SegFormer+GasUpper 68.43 (+5.57) 79.77 (+6.66) 81.26 (+4.07) 82.80 (+1.05) 11.248×109 4.74×106

PGDS
SegFormer[51] 75.96 82.55 86.41 87.56 8.116×109 3.73×106

SegFormer+GasUpper 76.69 (+0.73) 84.17 (+1.62) 86.79 (+0.38) 89.79 (+2.23) 11.248×109 4.74×106

PCPVT-S

CISPRSD
Twins[52] 76.18 85.81 86.48 87.16 44.491×109 27.85×106

Twins+GasUpper 76.31 (+0.13) 86.90 (+1.09) 86.56 (+0.08) 86.22 (−0.94) 45.093×109 28.15×106

PGDS
Twins[52] 77.30 84.58 87.20 89.99 44.491×109 27.85×106

Twins+GasUpper 77.76 (+0.46) 86.05 (+1.47) 87.49 (+0.29) 88.97 (−1.02) 45.093×109 28.15×106
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and  greenhouse  gas  emission  tracking.  In  contrast,  other
upsampling  methods  often  produce  segmentation  maps  with
blurred or  fragmented gas  regions,  leading to  inaccuracies  in  the
final output. The qualitative analysis thus underscores GasUpper’s
effectiveness in handling the unique challenges of greenhouse gas
segmentation,  making  it  a  promising  approach  for  hyperspectral
image  analysis  tasks.  These  visual  comparisons,  combined  with
the  quantitative  metrics,  provide  strong  evidence  of  GasUpper’s
effectiveness and its potential to advance the state-of-the-art in gas
segmentation. 

3.5    Ablation studies
In  this  section,  we  conduct  ablation  experiments  using  U-Net  as
the baseline network on the CISPRSD. The primary objective is to
assess  the  impact  of  crucial  modules  and  identify  the  optimal
settings for several key parameters.

Effect  of  camouflage  removal  module. To  assess  the
effectiveness  of  the  CRM,  we  conduct  a  detailed  comparative
analysis  under  controlled  training  conditions.  By  maintaining
identical  training  schemes  across  all  experiments,  we  ensure  that
any  observed  differences  in  performance  could  be  directly
attributed to the incorporation of CRM. The results  presented in
Table 1, clearly demonstrate that the CRM significantly enhances

the model  performance in the Gas category.  Specifically,  the IoU
and  Acc  for  the  Gas  category  show  notable  improvements  of
8.09% and 3.1%. These results strongly validate the role of CRM in
enhancing the segmentation capabilities of our method.

Choice of parameters. We begin by investigating the impact of
different  scaling  factors  on  the  performance  of  our  proposed
method.  Specifically,  we  evaluate  the  performance  using  scaling
factors  of  0.25,  0.5,  and 0.75.  The  results,  as  depicted  in Table  3,
indicate that a scaling factor of 0.5 yields the best results, achieving
an  IoU  of  73.03%.  Additionally,  we  explore  the  influence  of
various threshold settings on the performance of method. We test
thresholds  set  at  0.25,  0.5,  and  0.75.  As  shown  in Table  3,  the
threshold of 0.75 provides the optimal performance. 

4    Limitation and Future Work
While our proposed GasUpper method significantly improves the
performance  of  greenhouse  gas  segmentation  in  hyperspectral
images, there are still several limitations that need to be addressed.
Firstly,  in the process of dealing with greenhouse gas camouflage
effects,  GasUpper  has  not  been  integrated  into  specialized
Camouflage Object  Detection (COD)[55-57] models  for testing.  Due
to the limited space of this article, readers are referred to Fan et al.’

 

Table 2    Gas segmentation results of different upsampling methods on the CISPRSD using U-Net and Twins model, with the best performance highlighted in
bold.

Model Method IoU (%) Acc (%) F1-score (%) Precision (%) FLOPs Params

U-Net

Nearest 68.00 74.77 80.95 88.25 0.204×1012 28.992×106

Bilinear 67.94 76.17 80.91 86.28 0.204×1012 28.992×106

Deconv 71.07 79.50 83.09 87.02 0.234×1012 39.788×106

Pixel Shuffle 71.09 79.00 83.10 87.65 0.359×1012 79.135×106

GasUpper 73.03 81.43 84.41 87.63 0.214×1012 32.603×106

Twins

Nearest 73.32 83.97 84.60 85.25 44.469×109 27.849×106

Bilinear 76.18 85.81 86.48 87.16 44.491×109 27.849×106

Deconv 76.25 86.95 86.53 86.11 45.418×109 28.243×106

GasUpper 76.31 86.90 86.56 86.22 45.093×109 28.147×106

 

Image BilinearGasUpper DeconvNearest Pixel-shuffleGround truth
Fig. 7    Qualitative results of different upsampling operators on hyperspectral image segmentation tasks. Note that only the RGB channels of the hyperspectral
image are visualized for reference purposes.
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s researches[58,59] for more detailed progress on COD. Secondly, the
computational  efficiency  of  GasUpper  needs  to  be  further
optimized.  The  integration  of  global  features  and  the  adaptive
sampling  process  may  introduce  additional  computational
overhead.

In future research, we intend to integrate GasUpper with state-
of-the-art  camouflage  object  detection  models.  This  integration
will  involve  thorough  testing  and  validation  to  ensure  that
GasUpper  enhances  the  detection  capabilities  of  these  models,
particularly in complex and challenging scenarios where gases are
difficult  to  discern.  Additionally,  to  improve  the  computational
efficiency  of  GasUpper,  we  will  focus  on  optimizing  the
integration  of  global  features  and  the  adaptive  sampling  process.
This  will  involve  exploring  more  efficient  algorithms  for  feature
extraction and reducing the  complexity  of  the  adaptive  sampling
mechanism. 

5    Conclusion
We  propose  the  Gas-Aware  Upsampling  method  that  enhances
feature  representation  during  the  upsampling  process  by
integrating gas global and image local information, and adaptively
adjusts the sampling regions based on the image content, thereby
achieving more accurate greenhouse gas segmentation. GasUpper
demonstrates  consistent  performance  improvements  across
multiple  benchmark  datasets,  particularly  with  significant
enhancements  in  IoU  (0.08%–9.44%)  and  Acc  (0.47%–6.26%).
Looking  ahead,  GasUpper’s  applicability  could  extend  beyond
environmental  monitoring to fields such as medical  imaging and
multispectral satellite image analysis.
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