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ABSTRACT

Segmenting greenhouse gases from hyperspectral images can provide detailed information regarding their spatial distribution,
which is significant for the monitoring of greenhouse gases. However, accurate segmentation of greenhouse gases is a
challenging task due to two main reasons: (1) Diversity: greenhouse gases vary in concentration, size, and texture; (2) Camou-
flage: the boundaries between greenhouse gases and the surrounding background are blurred. Existing methods primarily focus
on designing new modules to address the above challenges, often neglecting the design of the upsampling method within the
model, which is crucial for achieving accurate segmentation. In this work, we propose Gas-Aware Upsampling (GasUpper), a novel
and efficient upsampling method tailored for greenhouse gas segmentation. Specifically, we first generate a coarse segmentation
mask during the upsampling process. Based on the roughly segmented gas and background, we then extract the global features of
the gas and combine them with the original features to obtain de-camouflaged feature map that include both the global
characteristics of the gas and the local details of the image. This de-camouflaged feature map serves as the foundation for
subsequent point sampling. Finally, we utilize the de-camouflaged feature map to generate upsampling coordinate offsets,
enabling the model to adaptively adjust the sampling regions based on the content during the sampling process. We conduct
comprehensive evaluations by replacing the upsampling method in various segmentation approaches with GasUpper on two
hyperspectral datasets. The results indicate that GasUpper consistently and significantly enhances the performance across all
segmentation models (0.08%—-9.44% Intersection over Union (loU), 0.47%—6.26% Accuracy), outperforming other upsampling

methods.
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increasingly severe, and extreme weather events caused by

climate change are increasing, including heat waves,
floods, droughts, and wildfires”. These phenomena pose
significant threats to human lives and livelihoods, resulting in
substantial human, economic, and environmental losses.
Researches™ 7 indicate that the release of greenhouse gases like
carbon dioxide, methane, and nitrous oxide plays a key role in
driving these environmental and climatic disruptions. Therefore,
effectively monitoring and measuring these greenhouse gas
emissions has become a crucial topic in environmental science
and technology research'”.

Hyperspectral image, with its excellent spectral resolution and
rich band information, can capture the unique spectral
characteristics of greenhouse gases. Consequently, leveraging the
abundant spectral information within hyperspectral images to
segment greenhouse gases provides a novel pathway for
monitoring their emissions“”. It is a challenging task, however,
due to two major reasons. Firstly, influenced by atmospheric
conditions and environmental factors, as well as the varying
chemical properties and sources of greenhouse gases, these gases
often typically exhibit different distributions in hyperspectral
images, such as concentrations, size, and texture, as shown in

C urrently, the global environmental situation is becoming

Fig. la. The second is the camouflage effect of greenhouse gases.
Under conditions of low gas concentrations or specific lighting
and meteorological influences, greenhouse gases often exhibit
spectral features, textures, and morphologies that seamlessly blend
into the environmental backdrop in images, as shown in Fig. 1b.
Especially in urban environments, shadows and reflections from
buildings, as well as complex terrains, produce features similar to
those of greenhouse gases, causing the boundaries between
greenhouse gases and the background to become blurred and
indistinct, making them difficult to identify. These issues result in
the inaccurate segmentation of greenhouse gases.

While numerous methodologies have focused on refining
modules to address the above challenges, they have inadvertently
neglected the significance of upsampling operations™". Feature
upsampling holds a pivotal role in modern hyperspectral image
segmentation models. Firstly, upsampling is crucial for resolution
and spatial information recovery. The upsampling operation can
gradually restore the low-resolution feature maps output by the
encoder module to the original image resolution, enabling the
decoder to produce segmentation results with clear contours and
accurate positions”¥. Secondly, in the decoder module,
upsampling operations typically upsample low-resolution feature
maps to high resolution to fuse them with feature maps from the

1 School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China

2 School of Automation, Northwestern Polytechnical University, Xi’an 710072, China

3 School of Electronics and Control Engineering, Chang’an University, Xi’an 710064, China

4 Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China

Address correspondence to

© The author(s) 2025. The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/).

CAAI Artificial Intelligence Research | VOL. 4 Article No. 9150046 | 2025 1


http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.26599/AIR.2025.9150046

CAAI Artificial Intelligence Resea

Fig.1 Examples of greenhouse gases in hyperspectral images. We select
three spectral bands from the hyperspectral images for visual display.
(a) Greenhouse gases with different spatial distributions. (b) Greenhouse

gases with blurred boundaries against the surrounding environment.

encoder module, thereby fully leveraging feature information at
different levels"'. The most widely used feature upsampling
operators are the nearest neighbor and bilinear interpolations,
which determine new features according to the distance of spatial
distance. However, nearest neighbor and bilinear interpolations
only consider sub-pixel neighborhoods, failing to capture the rich
semantic information of the gas which is usually regionally
distributed on images. Some other learnable upsamplers introduce
learnable parameters in upsampling. For example, the
deconvolution™ layer works as an inverse operator of a
convolution layer, which learns a set of instance-agnostic
upsampling kernels. However, the deconvolution operator applies
the same kernel over the entire image regardless of content,

Hyperspectral image
Feature map

L sem
De-camouflaged
feature map

limiting its ability to distinguish greenhouse gases from the
surrounding environment. Pixel shuffle™ utilizes convolution to
increase the number of preceding channels and then reshapes the
feature maps to enhance resolution, but it also struggles with a
fixed upsampling pattern. Overall, the aforementioned
upsampling methods employ fixed patterns to process all regions
uniformly, lacking the capability to perform adaptive processing
based on distinctions between objects and background, as shown
in Fig. 2. This limitation becomes particularly evident when
dealing with hyperspectral image segmentation, where fine-
grained discrimination between greenhouse gases and their
surroundings is crucial. Camouflaged greenhouse gases often
blend seamlessly into their backgrounds, necessitating an
upsampling approach that can dynamically adapt to the subtle
differences in textures, colors, and shapes that differentiate gases
from their environment.

To overcome the aforementioned limitations, this paper
proposes a novel feature upsampling method called Gas-Aware
Upsampling (GasUpper), which enhances the distinguishability of
gas features and background features and dynamically adjusts the
upsampling areas based on image content to improve
segmentation accuracy. The working mechanism of GasUpper is
illustrated in Fig. 2. Specifically, GasUpper first distinguishes
between the target (gas-containing regions) and background
regions during the upsampling process and enhances the features
of both to generate the de-camouflaged feature map. The
enhancement of gas region features helps the model better
recognize the targets by amplifying their prominent features.
Meanwhile, the enhancement of background features aids in
reducing mis-segmentation and mitigating the interference from
background noise. This approach significantly enhances the
distinguishability between the greenhouse gas regions and the
background. Then, a dynamic adaptive sampling method is
introduced to process the de-camouflaged feature map features,
which generates adaptive upsampling coordinate offset values

Upsampled feature map Segmentation result

Sampling center Sampling region

Fig.2 Illustration of GasUpper working mechanism. Compared to interpolation-based upsampling methods with fixed sampling rules, GasUpper can

dynamically adjust the sampling regions based on image content.
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based on varying input features. Unlike traditional methods that
rely on fixed sampling patterns, GasUpper can represent the
distribution of gas, and magnify and capture the differences
between gas regions and background regions, enabling the model
to better predict segmentation results.

To validate the effectiveness of GasUpper, we conducted
extensive experiments on two benchmark datasets. The results
demonstrate that GasUpper outperforms traditional upsampling
methods, achieving remarkable improvements in segmentation
accuracy. Specifically, GasUpper can improve the performance of
segmentation models by up to 9.44% Intersection over Union
(IoU) on the industrial plume feature dataset™’, and by up to
6.26% Accuracy on the power generation dataset™. The
significant improvements achieved demonstrate that GasUpper is
an efficient feature upsampling method with the potential to serve
as a foundation for future research.

In summary, this paper makes the following contributions:

® We propose a novel feature upsampling method, GasUpper,
specifically designed for greenhouse gas segmentation. At each
position, GasUpper can leverage the enhanced content
information to predict the upsampling coordinate offset values,
achieving more accurate segmentation masks.

® We introduce two key modules for GasUpper: Camouflage
Removal Module (CRM) and Gas-Aware Adaptive Point
Sampling Module (GAPSM). Specifically, CRM captures clues of
greenhouse gases camouflaged in the environment by combining
global gas features with local detailed information, thereby
achieving camouflage removal for greenhouse gases. GAPSM
utilizes the de-camouflaged feature map to generate adaptive
sampling coordinate offset values, which guide the upsampling
process.

o Through extensive experiments, we demonstrate that
GasUpper  substantially improves segmentation accuracy
compared with other upsampling methods, eg., 9.44% IoU
improvement on the industrial plume feature dataset, making it a
promising upsampling method.

1 Related Work

1.1 Hyperspectral image segmentation

The field of hyperspectral image segmentation has seen significant
advancements in recent years. Early efforts, such as the edge-
embedded marker-based watershed algorithm proposed by Li et
al”, utilized edge information to enhance segmentation accuracy
and boundary precision. This approach was further refined by the
same group with an improved watershed algorithm that
incorporated pre- and post-processing techniques to mitigate over-
segmentation issues”’. As deep learning progressed, Kampffmeyer
et al” designed a deep convolutional neural network tailored for
semantic segmentation in hyperspectral images, focusing on
accurate mapping in urban environments while addressing class
imbalance challenges. Building on this, Su and Zhang™
introduced methods to evaluate segmentation performance from
both local and global perspectives, providing quantifiable insights
into error distribution. FusionNet*” further advanced this domain
by combining sea-land segmentation with ship detection through
deep  convolutional  networks, integrating  edge-aware
regularization to refine segmentation outcomes. Innovations
continued with Kemker et al®, who developed a novel
framework for hyperspectral image segmentation, employing
synthetic data for network initialization to counter the challenges
of label scarcity. Rusyn et al.”’ made significant contributions by
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addressing the specific challenge of cloud forecasting through
cloud image segmentation techniques. Motiyani et al.™ proposed
a new clustering method that utilizes k-means to sequentially
perform feature reduction, segmentation, and clustering on
hyperspectral images, aiming to improve segmentation accuracy.
Medellin et al™ introduced a new method that combines the
Arbitrary Segment Modeling (M-SAM) with the Spectral Angle
Mapping (H-SAM) algorithm for hyperspectral image semantic
segmentation. Wang and Zhang™ proposed a multi-scale
differential feature optimization network that leverages spatial
information relationships and high-low semantic features between
bi-temporal images to improve recognition accuracy.

To further enhance segmentation accuracy and efficiency in
high-resolution imagery, various innovative strategies have been
proposed. Convolutional networks have been effectively leveraged
to extract subtle features and define precise boundaries, as
demonstrated in dynamic multicontext segmentation™ and
boundary loss optimization™”. Additionally, novel deep learning
architectures such as ResUNet-a® and HQ-ISNet* have been
specifically designed to address the complexities of instance
segmentation in hyperspectral images. The incorporation of
attention mechanisms, as exemplified by studies like MANet"
and UNetFormer", has significantly improved the capture of
both local and global contextual information, leading to enhanced
segmentation outcomes. Pan et al”™ has designed a set of Deep
Dual-Resolution Networks (DDRNets) for real-time and accurate
semantic segmentation, which consist of a deep dual-resolution
backbone and an enhanced low-resolution context information
extractor.

These works have also tackled critical issues such as sparse
annotations"”, domain shifts"’, and the need for real-time
processing™, thus advancing the capabilities of semantic
segmentation techniques in hyperspectral imaging. Despite these
advancements, many existing hyperspectral image segmentation
methods still rely on conventional upsampling techniques with
fixed sampling rules. Unlike other segmented targets, greenhouse
gases in hyperspectral images exhibit diverse and camouflaged
spatial properties, requiring a more carefully designed approach to
upsample to achieve precise and reliable results.

1.2 Upsampling methods

Upsampling is a critical technique in signal and image processing,
which is mainly used to upscale image data from lower to higher
resolutions.

In deep learning and computer vision, it plays a pivotal role in
pixel-level tasks such as image segmentation, aiming to
reconstruct high-resolution images or feature maps from their
lower-resolution versions. Traditional upsampling methods, such
as interpolation, rely on fixed algorithms that perform uniform
interpolation between pixel points to increase resolution. These
approaches often disregard the semantic content of the images or
feature maps, focusing solely on mathematical manipulation of
pixel values™. While methods like deconvolution™ can introduce
undesirable checkerboard artifacts’, and unpooling techniques™!
can result in the loss of essential positional information, thereby
hindering accurate reconstruction of original data.

In recent years, dynamic upsampling approaches, including
CARAFE", FADE", SAPAY, and DySample" have gained
traction for their ability to incorporate learning-based adjustments
during upsampling. These advanced methods preserve finer
details while reducing noise and inconsistencies.

Despite their advantages, most existing upsampling methods
treat objects and backgrounds uniformly, which will lead to
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blurred edges in the resulting images. Our objective is to develop
an upsampling method that differentiates between gases and
backgrounds, providing sharper and more distinct boundaries in
areas with rich edge information.

2 Methodology

2.1 Overview

Greenhouse gases in atmospheric environments often exhibit
diverse and camouflaged properties, varying shapes, and indistinct
boundaries, making precise segmentation extremely challenging.
While existing methods have made significant strides in
addressing these challenges, they often rely on fixed upsampling
patterns, which can struggle to adapt to the subtle differences
between gas regions and their surroundings. To overcome these
limitations, we introduce GasUpper, a novel upsampling method
that dynamically adjusts the sampling process based on the
content of the input feature map, enabling more accurate and
refined gas segmentation. The key innovation of GasUpper lies in
its two-stage adaptive mechanism: the CRM distinguishes between
gas-containing regions and the background by combining global
gas features with local image details, while the GAPSM
dynamically adjusts the sampling regions based on the content of
the input feature map. This adaptive approach enables GasUpper
to capture subtle differences in texture, color, and shape, which are
often overlooked by conventional methods, making it particularly
effective in addressing the challenges of greenhouse gas
segmentation, such as the camouflage effect and diverse spatial
distributions of gases in hyperspectral images. By combining
global context with local detail and introducing a dynamic
adaptive sampling mechanism, GasUpper represents a significant
advancement over existing upsampling methods, offering a more
accurate solution for hyperspectral image segmentation.

The overall framework of GasUpper is shown in Fig. 3. We first
feed the original image into the encoder to generate an initial
feature map. Next, we process the feature map through the CRM
to produce a global feature map. Then we combine the global
feature map with the original image feature through a residual
connection to result in a de-camouflaged feature map that
integrates both the global context of greenhouse gas and the
background feature, as well as the local details of the original
image. CRM allows the model to dynamically distinguish whether
the sampling area corresponds to the background or the gas of
interest. Finally, we upsample the original image feature to the
target size by the GAPSM.

2.2 Camouflage removal module

Upsampling is a process of gradually restoring spatial information

by enhancing the resolution of an image to recover more details.
However, due to the often blurred boundaries between
greenhouse gases and their surrounding environment, confusion
can easily arise during the upsampling process, leading to a loss of
detail in the enlarged image of greenhouse gases. Therefore, to
better restore the details in the image after upsampling, it is
necessary to accurately distinguish between greenhouse gases and
the background during this process.

The CRM is designed to distinguish between camouflaged
greenhouse gas and background regions, generating a de-
camouflaged feature map X, that integrates both gas and
background features. Specifically, given a feature map X of size
CxHx W, we first use a 1x1 convolution layer to predict a
segmentation mask, where the mask has two channels
representing gas and background, respectively. To determine the
probability of each pixel belonging to gas or background, we apply
a softmax normalization to the mask to generate a probability
map. This process can be expressed as

M = Softmax (f(X)) (1)

where M € R**" denotes the computed segmentation mask
and f(-) represents the convolution function.

Once the segmentation mask M is generated, it is decomposed
into a gas mask M and a background mask M; in the channel
dimension. However, at this stage, both the gas and background
masks contain continuous values. To further clarify whether the
region is gas or background, we apply a threshold 7 to binarize
these probabilities, identifying confident gas and background
localizations for enhancement while leaving uncertain pixels near
boundaries for subsequent processing. The choice of the threshold
7 is crucial for effective upsampling. If 7 is set excessively high, gas
regions with strong camouflage characteristics may be overlooked.
Conversely, a low 7 could introduce noise by misclassifying the
background as gas. Through experiments, we determined that the
optimal threshold for effectively balancing these trade-offs is 0.75.

Due to the blurred boundary between greenhouse gases and the
background in hyperspectral images, global features are needed to
provide overall semantic information, such as spectral response,
intensity distribution, and spatial proportions. These features help
the model distinguish between gas and background regions. To
achieve this, we introduce global average pooling to generate
global feature vectors. We first apply a weighting operation to the
feature map, reducing noise and enhancing the model’s attention
on distinguishing between gas and background. And then, we
average the weighted feature map across spatial dimensions. The
approach extracts comprehensive gas and background features
without being influenced by spatial positioning. The resulting
global feature vectors are denoted as V; and V3, which represent

/ Camouflage removal module \\ Gas-aware adaptive point sampling module
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Fig.3 Overall framework of the GasUpper. GasUpper comprises two main components: the CRM and the GAPSM. The CRM enhances feature maps by
distinguishing gas from background, while the GAPSM adjusts the upsampling grid based on pixel characteristics.
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the global features of the entire gas and background regions,
respectively:

Ve = GAP(XOM,,) (2)

V, = GAP(X® M) (3)

where GAP(-) represents the global average pooling operation.
Next, the binarized gas mask and background mask are
combined with the respective gas and background feature vectors
to generate the global feature map X;. This operation enhances
feature information by emphasizing the most relevant regions:

Xo= (Vo (M > 1)+ V- (M, > 7)) (4)

where 7 is the threshold.

Subsequently, to enhance gradient flow and inject global
context information without losing the local details of the original
image, we apply a residual connection between the global feature
map X;; and the original feature map X to produce an enhanced
feature map X;:

X =X+X, (5)

Given the camouflage characteristics of greenhouse gases in
natural atmospheric environments, we further enhance the feature
representation to generate a de-camouflaged feature map X, by
concatenating the feature map X; with the original feature map
X. This operation enables the model to adaptively select and
combine features across multiple levels, preserving local detail
information. However, this approach increases the channel
dimension, so we apply a fusion convolution layer to reduce the
number of channels and flexibly adjust the weights of different
feature channels, achieving a more adaptive feature fusion. The
entire process can be expressed by

X, = F(concat(X, X;)) (6)

where concat(-) represents concatenation along the channel
dimension and F denotes the convolutional layer used to fuse the

Image feature

concatenated features.

2.3 Gas-aware adaptive point sampling module

After obtaining the de-camouflaged feature map X, from the
CRM, we need to generate the sampling point set for the target
image based on the feature map as shown in Fig. 4. Given an
upsampling factor t, we first use a linear layer with input and
output channel sizes C and 2s* on the feature map X, to compute
offset values for each pixel. To constrain the magnitude of the
offset, we apply a sigmoid function to compress the output values
to the range [0, 1]. These values are then scaled by 0.5 to further
limit the offset range to [0, 0.5] to ensure that sampling points
remain within a reasonable vicinity. This operation produces an
offset map O with dimensions 2 x Hx W, and then a pixel
shuffle operation is applied to reshape O into dimensions
2 x tH x tW. Next, the offset map O is combined with the initial
sampling positions grid G of the feature map X to generate the
final set of sampling points S. The entire process can be expressed
as

O = Sigmoid (Linear (Xp)) X 0.5 (7)

$§=0+G (8)

The sampling set § € R>*"" represents the position of each
pixel in the target feature relative to the input feature. However, to
generate the target size image feature X' € ROV, we utilize a
grid sampling function that maps the coordinates in S to the
corresponding positions in the input feature X € R“**™_ For
each sampling position, the value is computed using bilinear
interpolation, which estimates the value by considering the four
nearest integer pixel values in the input feature.

X' = GridSample (X, S) 9)

As shown in Fig. 5, the target values obtained through the
original bilinear upsampling method differ significantly from
those generated by the GAPSM’s offset-based bilinear
interpolation. In origin bilinear upsampling, the position of each

tw

Bilinear interpolation

Target feature

Fig.4 Ilustration of interpolation based on sampling set generated by gas-aware adaptive point sampling. The yellow circles represent the original sampling

points, while the red triangles indicate the new sampling points.

(a) Origin bilinear interpolation

w5Q';

' A
w'Q'y
e

(b) Offset-based bilinear interpolation

Fig.5 Comparison with bilinear interpolation upsampling method. Q represents the values at the four neighboring grid points, @ denotes the interpolation

weights corresponding to these grid points, and (x; y) indicates the sampling point.
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target pixel is fixed and mapped to the original features based on a
regular scaling ratio, ignoring the relative positional relationships
of neighboring points Q;. The sampling points are solely
influenced by the fixed scaling factor. In contrast, the new
sampling point (x,y) generated by our method dynamically
adjust their weights w] based on predicted offsets. This allows the
sampling process to adapt to the content of the input feature.

2.4 Training and inference

Training process. During training, since decoders typically have
multi-layer structure, our method predicts a segmentation mask at
each layer. And for each layer, we calculate cross-entropy loss,
which improves the quality of the masks and guides the model to
progressively and precisely distinguish between gas and
background. These individual losses are then aggregated to derive
the final training loss, utilizing the supervisory signals from all
decoder layers. The loss calculation can be expressed as

N
Low =Y Lee(P,, G) (10)
i=1
where N represents the number of decoder layers, Leg(-,-)
denotes the cross-entropy loss function, P; represents the
prediction result of the i-th layer, and G; represents the ground
truth segmentation mask.

Inference process. During inference, we utilize the parameters
learned during training to dynamically generate pixel-wise
sampling coordinate offsets from the input low-resolution
features. And then adopt the adaptive point upsampling to
produce the high-resolution output.

3 Experiment

3.1 Datasets

Among the available public datasets, we choose two high-quality
gas segmentation datasets: the Characterization of Industrial
Smoke Plumes from Remote Sensing Data (CISPRSD)" and the
Power Generation Data Set (PGDS)™.

CISPRSD. This dataset was collected from ESA’s Sentinel-2
earth-observing satellite constellation”’. Each raster image
contains all 13 spectral-band channels from the calibrated Level-
2A reflectances and is cropped to a dimension of 1200 meters on
each side, equivalent to 120 120 pixels. Low-resolution channels
are resampled to the highest available resolution (10 m/pixel). The
images are categorized into gas types for segmentation. Based on
the methodology of Mommert et al.*, we select 996 images for
training and 214 images for testing, with both sets padded to a size
of 512 x 512 pixels.

PGDS. This dataset is also acquired from ESA’s Sentinel-2
earth-observing satellite constellation”. Each image contains 13
spectral bands and has dimensions of either 120x 120 pixels or
300% 300 pixels. The images are labeled into gas categories for
segmentation. Following the approach of Hanna et al.””, we select
1498 images for training and 73 images for testing, with all images
padded to 512 x 512 pixels.

3.2 Instantiation of GasUpper

To evaluate the effectiveness of our proposed method, we integrat
the GasUpper into various segmentation models and conducted
extensive experiments on CISPRSD and PGDS. We select a
diverse set of recent and well-performing segmentation models for
comparison. Each model is individually trained and finely tuned

6

to establish robust baselines, ensuring a thorough evaluation.
Specifically, we select three representative models from CNN-
based methods and two representative models from ViT-based
methods, based on their performance metrics and architectural
diversity. The selection provides a comprehensive assessment of
the GasUpper method across different model types. We replace
the original upsampling methods with GasUpper to validate its
effectiveness.

U-Net + GasUpper. In the U-Net model™, the encoder
employs a layer-by-layer downsampling strategy to capture image
features at different scales. Specifically, in its four levels, features
are first extracted using 3 x 3 convolutions, followed by 2 x 2 max
pooling operations to reduce the spatial dimensions of the feature
maps. During the subsequent upsampling part, the feature map
dimensions are gradually restored to their original sizes.

U-Net employs a 2 x 2 transposed convolution kernel for this
upsampling strategy, which effectively doubles the height and
width of the feature maps, restoring them to their original
dimensions. Finally, the upsampled feature maps are concatenated
with the corresponding downsampled feature maps to recover
spatial information. Since the scale of each upsampling operation
in U-Net is consistent, we can directly replace the four
upsampling operations in the U-Net model with GasUpper,
setting the upsampling scale to 2. This ensures that the feature
maps in each decoder stage are uniformly magnified by a factor of
two, achieving the same resolution as the corresponding encoder
stage feature maps. The process is illustrated in Fig. 6a.

DeepLabv3 + GasUpper. In DeepLabv3+™, the upsampling
component is enhanced by the Atrous Spatial Pyramid Pooling
(ASPP) technology. The ASPP module processes high-level
features, which are then reduced in dimension using a 1x1
convolution. These features are upsampled by a factor of four
using bilinear interpolation and fused with corresponding low-
level features from the encoder. Following this, an additional
convolution layer refines the features, and the refined feature map
is upsampled again to the original input size using bilinear
interpolation, producing a detailed segmentation map.

To improve this process, we replace the two bilinear
interpolation upsampling operations with GasUpper, as shown in
Fig. 6b. This replacement maintains consistent parameters but
leverages GasUpper’s dynamic and precise upsampling
capabilities. The first replacement occurs after the 1x1
convolution, dynamically adjusting the upsampling to ensure
spatial integrity and enhance feature map quality. The second
replacement is at the final upsampling stage.

DDRNet + GasUpper. The DDRNet™ employs a dual-
resolution network, where the high-resolution branch maintains a
1/8 resolution to preserve fine details, and the low-resolution
branch gradually reduces to 1/16, 1/32, and 1/64 to capture global
context. Specifically, the low-resolution features are progressively
upsampled to the high-resolution size using 2x bilinear
interpolation. In both the high-resolution branch and the fused
feature map, 8 x upsampling generates intermediate segmentation
predictions for training supervision. Finally, the fused 1/8
resolution features are upsampled 8x to the original input
resolution for the final segmentation output. As shown in
Fig. 6c, we replace DDRNet’s bilinear upsampling with
GasUpper, while maintaining consistent upsampling factors to
ensure comparability.

SegFormer + GasUpper. In contrast to U-Net, the SegFormer
model®" upsampling procedure does not use a fixed scaling factor.
Instead, it incorporates multi-scale feature fusion. The process
accepts feature maps from four different scales, originating from
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Fig.6 Illustration of GasUpper integrated into the segmentation models.

the backbone (1/4,1/8,1/16,1/32). Subsequently, it uses bilinear
interpolation to upsample these feature maps to the size of the
initial stage (1/4 scale). In our approach, we replace the original
bilinear interpolation upsampling with GasUpper. As illustrated in
Fig. 6d, we dynamically set the target scales for upsampling to
(1,2,4,8), resulting in feature maps that are upsampled to a
resolution of 1/4 of the original image size.

Twins-PCPVT + GasUpper. The Twins-PCPVT model™
utilizes a Feature Pyramid Network (FPN)", which consists of
two main components: a down-up path and a top-down path.
The down-up path extracts hierarchical features through a series
of standard convolutional operations, while the top-down path
facilitates feature fusion via bilinear interpolation upsampling and
skip connections. Specifically, bilinear interpolation is employed
for upsampling to align the dimensions of the low-level feature
maps. Following this, a 1x1 convolution adjusts the channel
numbers to ensure consistency between the upscaled and low-
level feature maps. Subsequently, element-wise addition is used for
feature fusion. As illustrated in Fig. 6e, the traditional bilinear
interpolation upsampling can be seamlessly replaced with the
GasUpper method without additional operations. This
replacement maintains the upsampling scale at 2, ensuring
consistency with previous scales.

3.3 Implementation details

Experimental setup. We follow the training schedule outlined in
MMSegmentation®™. For a fair comparison of method
performance, all experiments are implemented with PyTorch and
run on RTX 3090 Ti. The training involves a total of 80000
iterations. We utilize the SGD optimizer, configured with a
momentum of 0.9 and a weight decay of 0.0005. The batch size is
set to 4, and the initial learning rate is 0.001. Data augmentation is
applied by randomly scaling images between 0.5 and 2.0, followed
by random cropping and flipping. Additionally, image edges are
padded to ensure square input images.

Evaluation metrics. To clearly demonstrate the segmentation
performance for gas regions, we evaluate the model using the IoU,
Accuracy (Acc), F1-Score, and Precision metrics only for the gas
regions, as recommended by Lu et al.*’ IoU measures the overlap
between the predicted and ground truth values, while Acc reflects
the proportion of correctly classified pixels out of the total. In
addition, the F1-Score, which balances precision and recall, is used
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to evaluate the model’s ability to correctly identify gas regions
while minimizing false positives and false negatives. Precision, on
the other hand, quantifies the proportion of correctly predicted
gas pixels relative to all pixels predicted as gas, providing insight
into the model’s reliability in avoiding false detections. These
metrics collectively offer a comprehensive evaluation of the
model’s segmentation performance. Furthermore, to assess
computational efficiency and model complexity, we measure
Floating Point Operations (FLOPs) and Parameters (Params),
which provide insights into the computational load and memory
usage during runtime.

3.4 Experimental results

Results of the instantiation models. The performance results of
the GasUpper-based instance models evaluated on the CISPRSD
and PGDS datasets are comprehensively presented in Table 1.
Following the replacement of upsampling with GasUpper, the U-
Net model exhibits a substantial improvement across both
datasets. On the CISPRSD dataset, U-Net with GasUpper achieves
a 5.09% increase in IoU and a 5.26% increase in Accuracy.
Similarly, on the PGDS dataset, U-Net with GasUpper shows a
7.68% improvement in IoU and an 8.16% increase in Accuracy.
These significant improvements underscore the efficacy of
GasUpper in enhancing the segmentation capabilities of the U-
Net model, particularly in handling the complex and camouflaged
nature of greenhouse gases in hyperspectral images. For the
DeepLabv3+ model, the integration of GasUpper also yields
notable improvements. These results highlight the adaptability of
GasUpper to different model architectures.

The SegFormer model, which is based on a transformer
architecture, also benefits significantly from the integration of
GasUpper. On the CISPRSD dataset, SegFormer with GasUpper
achieves a 5.57% increase in IoU and a 6.66% increase in
Accuracy. On the PGDS dataset, the improvements are more
modest but still significant, with a 0.73% increase in IoU and a
1.62% increase in Accuracy. These results demonstrate that
GasUpper is not only effective in CNN-based models but also in
transformer-based architectures, which are increasingly popular in
modern segmentation tasks. The Twins-PCPVT model, which
utilizes a Feature Pyramid Network (FPN) for multi-scale feature
fusion, also shows consistent improvements with GasUpper.
Although the improvements in IoU were modest, the consistent
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Table1 Gas segmentation results on the CISPRSD and PGDS.

Backbone Dataset Method ToU (%) Acc (%) Fl-score (%)  Precision (%) FLOPs Params

U-Net!! 67.94 76.17 80.91 86.28 0.204x10" 28.99x10°

CISPRSD
U-Net.S U-Net+GasUpper 73.03 (+5.09) 81.43 (+5.26) 84.41 (+3.50) 87.63 (+1.35) 0.214x107  32.60x10°

-Net-.

PGDS U-Net!! 61.24 66.87 75.96 87.92 0.204x10™”  28.99x10°
U-Net+GasUpper 68.92 (+7.68)  75.03 (+8.16) 81.60 (+5.64) 89.42 (+1.50)  0.214x10”  32.60x10°
DeepLabv3plus"™”’ 73.02 79.64 84.41 89.78 0.177x10"”  41.22x10°

CISPRSD
ReN DeepLabv3plus+GasUpper 7429 (+1.27)  86.72 (+6.63)  85.25 (+0.84) 83.83(=5.95)  0.179x10%  76.19x10°

esNet-50

PGDS DeepLabv3plus"™’ 74.15 80.89 85.16 89.89 0.177x10"  41.22x10°
DeepLabv3plus+GasUpper  76.27 (+2.12)  83.36 (+2.47)  85.93 (+0.77)  91.91 (+2.02)  0.179x10"”  76.19x10°
DDRNet"™! 75.07 81.62 85.76 90.34 5.735x10° 4.729x10°

CISPRSD
DDRN DDRNet+GasUpper 76.30 (+1.23)  82.34(+0.72) 86.56 (+0.80)  91.23 (+0.89) 5.889x10° 5.132x10°

et

PGDS DDRNet"™! 74.25 79.65 85.22 91.64 5.735x10° 4.729%x10°
DDRNet+GasUpper 74.71 (+0.46)  79.69 (+0.04)  85.52 (+0.30)  92.27 (+0.63) 5.889x10° 5.132x10°
SegFormer"" 62.86 73.11 77.19 81.75 8.116x10° 3.73x10°

CISPRSD
MIT-B SegFormer+GasUpper 68.43 (+5.57) 79.77 (+6.66)  81.26 (+4.07)  82.80 (+1.05)  11.248x10°  4.74x10°

iT-

PGDS SegFormer"" 75.96 82.55 86.41 87.56 8.116x10° 3.73x10°
SegFormer+GasUpper 76.69 (+0.73)  84.17 (+1.62)  86.79 (+0.38)  89.79 (+2.23)  11.248x10°  4.74x10°
Twins®™ 76.18 85.81 86.48 87.16 44.491x10°  27.85x10°

CISPRSD
PCPVTS Twins+GasUpper 76.31 (+0.13)  86.90 (+1.09)  86.56 (+0.08) 86.22 (-0.94)  45.093x10°  28.15x10°
PGDS Twins"™ 77.30 84.58 87.20 89.99 44.491x10°  27.85%x10°
Twins+GasUpper 77.76 (+0.46)  86.05 (+1.47)  87.49 (+0.29) 88.97 (-1.02)  45.093x10°  28.15x10°

gains in Accuracy and Fl-score across both datasets suggest that
GasUpper enhances the model’s ability to correctly classify gas
regions, even in challenging scenarios. Finally, the DDRNet,
which is designed for real-time and accurate semantic
segmentation, also benefits from the integration of GasUpper.
These improvements not only validate the broad applicability of
GasUpper across different model architectures but also highlight
its potential for improving the performance of state-of-the-art
segmentation models.

Furthermore, as shown in Table 1, GasUpper introduces
additional FLOPs and parameters compared to the baseline
models. For instance, in the U-Net architecture, GasUpper
increases the FLOPs from 0.204x10” to 0.214x10” and the
number of parameters from 28.99x10° to 32.60x10°. Despite these
increases in computational complexity, the performance
improvements justify the additional cost, particularly in
applications where accurate segmentation of greenhouse gases is
critical. For example, U-Net with GasUpper achieves a 5.09%
increase in IoU and a 5.26% increase in Accuracy on the
CISPRSD dataset. The increased computational cost of GasUpper
can be attributed to its dynamic adaptive sampling mechanism
and the Camouflage Removal Module, which enhance the model’
s ability to distinguish between gas regions and complex
backgrounds. While these modules introduce additional FLOPs
and parameters, they are crucial for addressing the unique
challenges of greenhouse gas segmentation, such as the
camouflage effect and blurred boundaries in hyperspectral images.

Comparison with other upsampling methods. In order to
thoroughly evaluate the validity of our proposed GasUpper in
comparison to several widely used upsampling techniques in
hyperspectral image segmentation, including nearest neighbor,
bilinear interpolation, transposition convolution, and pixel shuffle,
we conduct a series of comprehensive experiments using U-Net
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and Twins as baseline models. Each of these upsampling operators
is systematically integrated into the U-Net and Twins to replace its
standard upsampling method, and the modified U-Net and Twins
models were trained and tested on the CISPRSD.

The results of these comparative experiments are detailed in
Table 2. Our proposed GasUpper method outperforms other
upsampling operations on most metrics. Specifically, in the
context of U-Net, GasUpper achieved an IoU of 73.03%, which
represents a significant improvement over the other methods.
Similarly, when applied to the Twins model, GasUpper delivered
an IoU of 76.31%, outperforming the next best method by a
substantial margin.

In addition to the quantitative improvements, the qualitative
results presented in Fig. 7 further validate the advantages of
GasUpper. The visual comparisons, conducted using U-Net as the
baseline model, demonstrate that GasUpper consistently generates
clearer and more accurate segmentation maps compared to other
upsampling methods, such as nearest neighbor, bilinear
interpolation, deconvolution, and pixel shuffle. As shown in Fig. 7,
GasUpper  effectively  reduces  mis-segmentation  errors,
particularly in regions where gas plumes overlap with complex
backgrounds, such as urban structures or natural terrain. For
instance, in cases where traditional upsampling methods fail to
distinguish between gas regions and background noise, GasUpper
successfully identifies and isolates the gas plumes with higher
precision. This is achieved through its dynamic adaptive sampling
mechanism, which adjusts the sampling regions based on the
content of the input feature map, thereby enhancing the model’s
ability to capture subtle differences in texture, color, and shape
between gas regions and their surroundings. Furthermore, the
visual results highlight GasUpper’s ability to preserve fine-grained
details in the segmentation maps, which is critical for applications
requiring high spatial accuracy, such as environmental monitoring

CAAI Artificial Intelligence Research | VOL. 4 Article No. 9150046 | 2025
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Table2 Gas segmentation results of different upsampling methods on the CISPRSD using U-Net and Twins model, with the best performance highlighted in

bold.

Model Method ToU (%) Acc (%) F1-score (%) Precision (%) FLOPs Params
Nearest 68.00 74.77 80.95 88.25 0.204x10" 28.992x10°
Bilinear 67.94 76.17 80.91 86.28 0.204x10" 28.992x10¢
U-Net Deconv 71.07 79.50 83.09 87.02 0.234x10™ 39.788x10°
Pixel Shuffle 71.09 79.00 83.10 87.65 0.359x10" 79.135x10°
GasUpper 73.03 81.43 84.41 87.63 0.214x10" 32.603x10°
Nearest 73.32 83.97 84.60 85.25 44.469%x10° 27.849x10°
Twins Bilinear 76.18 85.81 86.48 87.16 44.491x10° 27.849x10¢
Deconv 76.25 86.95 86.53 86.11 45.418x10° 28.243x10°
GasUpper 76.31 86.90 86.56 86.22 45.093x10° 28.147x10°

Image Ground truth

GasUpper

Bilinear

Nearest Deconv Pixel-shuffle

Fig.7 Qualitative results of different upsampling operators on hyperspectral image segmentation tasks. Note that only the RGB channels of the hyperspectral

image are visualized for reference purposes.

and greenhouse gas emission tracking. In contrast, other
upsampling methods often produce segmentation maps with
blurred or fragmented gas regions, leading to inaccuracies in the
final output. The qualitative analysis thus underscores GasUpper’s
effectiveness in handling the unique challenges of greenhouse gas
segmentation, making it a promising approach for hyperspectral
image analysis tasks. These visual comparisons, combined with
the quantitative metrics, provide strong evidence of GasUpper’s
effectiveness and its potential to advance the state-of-the-art in gas
segmentation.

3.5 Ablation studies

In this section, we conduct ablation experiments using U-Net as
the baseline network on the CISPRSD. The primary objective is to
assess the impact of crucial modules and identify the optimal
settings for several key parameters.

Effect of camouflage removal module. To assess the
effectiveness of the CRM, we conduct a detailed comparative
analysis under controlled training conditions. By maintaining
identical training schemes across all experiments, we ensure that
any observed differences in performance could be directly
attributed to the incorporation of CRM. The results presented in
Table 1, clearly demonstrate that the CRM significantly enhances
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the model performance in the Gas category. Specifically, the IoU
and Acc for the Gas category show notable improvements of
8.09% and 3.1%. These results strongly validate the role of CRM in
enhancing the segmentation capabilities of our method.

Choice of parameters. We begin by investigating the impact of
different scaling factors on the performance of our proposed
method. Specifically, we evaluate the performance using scaling
factors of 0.25, 0.5, and 0.75. The results, as depicted in Table 3,
indicate that a scaling factor of 0.5 yields the best results, achieving
an IoU of 73.03%. Additionally, we explore the influence of
various threshold settings on the performance of method. We test
thresholds set at 0.25, 0.5, and 0.75. As shown in Table 3, the
threshold of 0.75 provides the optimal performance.

4 Limitation and Future Work

While our proposed GasUpper method significantly improves the
performance of greenhouse gas segmentation in hyperspectral
images, there are still several limitations that need to be addressed.
Firstly, in the process of dealing with greenhouse gas camouflage
effects, GasUpper has not been integrated into specialized
Camouflage Object Detection (COD)“*" models for testing. Due
to the limited space of this article, readers are referred to Fan et al.”
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Table3 Ablation studies: Key module and parameters analysis.

Ablation ToU (%) Acc (%)
X 64.94 78.32
CRM
v 73.03 81.42
0.25 73.03 81.73
Scaling factor 0.50 73.03 81.42
0.75 68.33 73.17
0.25 72.72 80.98
Threshold 0.50 72.24 79.45
0.75 73.03 81.42

58,59]

s researches®™ for more detailed progress on COD. Secondly, the
computational efficiency of GasUpper needs to be further
optimized. The integration of global features and the adaptive
sampling process may introduce additional computational
overhead.

In future research, we intend to integrate GasUpper with state-
of-the-art camouflage object detection models. This integration
will involve thorough testing and validation to ensure that
GasUpper enhances the detection capabilities of these models,
particularly in complex and challenging scenarios where gases are
difficult to discern. Additionally, to improve the computational
efficiency of GasUpper, we will focus on optimizing the
integration of global features and the adaptive sampling process.
This will involve exploring more efficient algorithms for feature
extraction and reducing the complexity of the adaptive sampling
mechanism.

5 Conclusion

We propose the Gas-Aware Upsampling method that enhances
feature representation during the upsampling process by
integrating gas global and image local information, and adaptively
adjusts the sampling regions based on the image content, thereby
achieving more accurate greenhouse gas segmentation. GasUpper
demonstrates consistent performance improvements across
multiple benchmark datasets, particularly with significant
enhancements in IoU (0.08%-9.44%) and Acc (0.47%-6.26%).
Looking ahead, GasUpper’s applicability could extend beyond
environmental monitoring to fields such as medical imaging and
multispectral satellite image analysis.
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