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ABSTRACT

The field of colloidal nanocrystals has witnessed enormous progress in the last three decades. For many families of
nanocrystals, wet-chemical syntheses have been developed that allow control over the crystal shape and dimensions, from the
three-dimensional down to the zero-dimensional case. Additionally, careful control of surface chemistry has enabled the
prevention of non-radiative recombination, thus allowing the detailed study of confined charge carriers and excitons. This has led
to a vast amount of applications of nanocrystals in displays, labels, and lighting. Here, we discuss how this expertise could
benefit the rapidly advancing field of quantum materials, where the coherence of electronic wave functions is key. We
demonstrate that colloidal two-dimensional nanocrystals can serve as excellent model systems for studying topological phase
transitions, particularly in the case of quantum spin Hall and topological crystalline insulators. We aim to inspire researchers with
strong chemical expertise to explore the exciting field of quantum materials.

KEYWORDS

colloidal nanocrystals, topological insulators, quantum materials, edge/surface states

1 Nanocrystals as quantum materials

Semiconductor nanocrystals exhibiting quantum confinement in
one or more dimensions (e.g. quantum dots, rods, platelets), have
been a topic of intense research since their discovery over 40 years
ago [1]. Due to quantum confinement effects, the emission
spectrum of semiconductor nanocrystals can be accurately tuned
by controlling their dimensions. This led to the belief that these
nanocrystals might contribute significantly to display technologies
[2]. Indeed, by the 1990s and early 2000s, pioneering studies began
to explore how quantum dots could be integrated into light-
emitting diodes and other displays [3,4]. Since then, new wet-
chemical synthesis techniques and breakthroughs in surface
chemistry have enabled precise control over nanocrystal shapes
and sizes, thereby significantly advancing the field of colloidal
nanocrystals. These developments have resulted in the use of
semiconductor nanocrystals in a wide variety of applications
[5-9]. The success of nanocrystals in optoelectronics raises the
question whether these materials could thrive in other areas of
research as well. Here, we propose the use of colloidal nanocrystals
in the next generation of electronic systems, in which energy-
efficient transfer and processing of information is key. Specifically,
we demonstrate how two-dimensional (2D) nanocrystals can
serve as powerful model systems for investigating topological
phases such as quantum spin Hall insulators and topological
crystalline insulators. This review aims to highlight how the
accumulated knowledge on colloidal nanocrystals can benefit the
rapidly evolving field of quantum materials, encouraging
researchers with a strong chemistry background to explore this

field.

2 Nanocrystals, surface states, and surface
chemistry

In addition to Alexei Ekimov and Louis Brus, who discovered that
the absorption spectrum of nanometer-sized inorganic crystals
reflects the confinement of the electron-hole exciton, Moungi
Bawendi was the third researcher to receive the 2023 Nobel Prize
in Chemistry [10]. Together with Chris Murray and David Norris,
Bawendi developed a high-temperature, low growth-rate synthesis
method for colloidal CdX (X =S, Se, Te) nanocrystals. By precisely
controlling the reaction conditions, such as temperature and
precursor concentrations, they were able to promote uniform
growth. This control allowed the production of nearly
monodisperse quantum dots that emit light from the lowest
excitonic state [1, 11]. Consequently, the effects of particle-wave
confinement in the nanocrystal host became observable, not only
in the absorption, but also in the emission spectrum. Due to this
confinement effect, which adds kinetic energy to the excited
electron and hole pair (i.e. the exciton), the optical properties of
nanocrystals can be tuned by controlling their size. The work
conducted by Bawendi's group marked the breakthrough that led
to substantial advancements in nanocrystal chemistry and a
deeper understanding of the optoelectronic properties.

Besides size inhomogeneity, another significant challenge in
nanocrystal synthesis is the presence of unpassivated surface states.
Surface states are electronic states localized at the surface of
nanocrystals that can trap excitons and reduce photoluminescence
efficiency. I. Tamm [12] and W. Shockley [13] already showed in
the 1930’s that the termination of atomic periodicity results in an
electronic state localized close to the terminating atom. Such a
surface state has a different energy from the orbital states of the
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interior atoms, and is therefore not part of a specific electronic
band [13]. If this state is positioned in the band gap between the
highest occupied valence band and the lowest empty conduction
band, the exciton emission is often deteriorated by non-radiative
recombination via this surface state. Due to the small size of
nanocrystals, a relatively high number of atoms is situated at the
surface. These surface atoms have a lower coordination than those
in the bulk, and therefore they form energy levels that deviate in
energy from the regular valence- and conduction bands [13, 14].
CdX nanocrystals, for instance, show dangling bond states on the
surface Cd atoms. To solve this problem, Bawendi’s group
proposed to passivate the dangling bonds on the surface Cd atoms
with a functionalized alkene (TOPO) [1]. This changes the
environment of the Cd atoms at the surface to closely resemble
that of the interior atoms in the zinc blende crystal. Consequently,
the surface states shift towards the energy of the bands and do not
affect the exciton photoluminescence. Due to the extensive
chemical efforts by many brilliant chemists, the chemical
passivation with organic ligands [15-21] and epitaxial inorganic
shells [22-25] became state of the art (the cited publications just
provide an impression and are far from complete). This not only
resulted in high photoluminescence quantum yields, but also led
to better shape and size control and a higher stability of the
nanocrystal dispersion, enabling the self-assembly of nanocrystals
into superlattice solids [26-30]. The understanding of how
nanocrystal surface energies can be altered with surfactants—also
during nanocrystal growth—resulted in a variety of shapes beyond
quasi-spherical quantum dots, such as platelets (2D confinement),
rods (one-dimensional (1D) confinement), or even rings and
tetrapods [31-34]. Ligand exchange procedures further enabled
functionalization and passivation of nanocrystals by the
replacement of traditional organic ligands with inorganic ligands,
for example making them dispersible in aqueous environments
[18, 35, 36]. Due to the great advances in surface state passivation,
many families of semiconductor nanocrystals nowadays show
photoluminescence quantum yields between 50% and 100%,
leading to practical applications in displays, TV screens, light-
emitting devices (LEDs), and biomedical research [5-9]. For such
applications, subtle surface chemistry has enabled the transfer of
nanocrystals from the conventional non-polar solvents to the
more polar solvents used in industry. Recently, there has also been
a drive towards the development of more sustainable nanocrystal
materials such as InP and CIS quantum dots [37-40].

It is evident that a good understanding of surface states has
been crucial for nanocrystal applications [41-45]. However, an
entirely different class of surface states, found in topological
insulators (TTs), remains relatively unknown and underutilized.
Unlike conventional surface states with a local chemical origin (see
above), TI surface states originate from and are protected by the
bulk band structure, resulting in unique electronic properties such
as robust, spin-polarized conduction channels that are protected
against non-magnetic impurity scattering. These non-scattering
states could pave the way for new applications in the field of
quantum materials, including advanced electronics, spintronics,
and quantum computing. The extensive chemical expertise
developed for manipulating nanocrystal surface states may now
aid us in understanding and controlling topological surface states.

3 Topological surface- and edge states protected
by the crystal band structure

To provide a basic understanding of topological insulators, we will
start with a brief overview of their discovery and the theoretical
principles behind them. Since it is not our aim to provide an in-
depth theoretical basis of electronic topological insulators in the
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single-particle regime, nor to review the role of possible electron
interactions in these systems, we refer the interested reader to
excellent reviews on these topics [46—55].

A three-dimensional (3D) TI is a bulk insulator with metallic
surface states characterized by a Dirac cone with spin-momentum
locking, ie. (Ep,|), (E—p,1), and protected by time reversal
symmetry (TRS) [56—58]. In 2007, the theoretical predictions of L.
Fu, C. L. Kane, and E. J. Mele kickstarted the search for topological
insulators [57]. Soon after the theoretical groundwork was laid,
angle-resolved photoemission spectroscopy (ARPES) on BijSby;
revealed the presence of a single Dirac cone on the material’s
surface, thereby confirming it as a 3D TI [59]. Bismuth selenide
and bismuth telluride (Bi,Se; Bi,Te;) later emerged as more
promising TT candidates for applications due to their simpler band
structure and larger band gap [56].

To understand the origin of the dispersive Dirac-type states
present on the surfaces of three-dimensional topological insulator
crystals, it is instructive to compare the family of Bi,X; (X =S, Se,
Te) bulk crystals [56, 60] to the well-known CdX (X =S, Se, Te)
crystals. Bi,S; is a trivial (non-topological) insulator: its valence
band is formed from the frontier sulfur p-orbitals while its
conduction band is predominantly formed from the bismuth p-
orbitals. Such trivial insulators can be depicted as shown in Fig. 1,
right-most panel. Similar characteristics are observed across the
entire CdX family, where the conduction bands exhibit mostly
cadmium s-orbital character. In contrast, Bi,Se; and Bi,Te; show a
significant alteration in the band structure (Fig. 1, first panel). The
interaction between the bismuth and selenium p-orbitals,
influenced by crystal field effects and strong spin-orbit coupling,
causes a crossing which inverts the character of the valence and
conduction bands [56]. Due to the avoided crossing, a negative
(inverted) band gap emerges. A Z, invariant can be calculated
from the filled bands to distinguish trivial from non-trivial
materials, for which in three dimensions there are four [57, 61,
62]. It is important to note that the conditions for band inversion
are specific to the interior of the crystal. Consequently, as one
approaches the boundaries of a topologically non-trivial material
from its bulk, a transition occurs where the bands converge and
touch. This closing of the band gap gives rise to a two-dimensional
Dirac cone at the crystal surface. Due to this bulk-boundary
correspondence, the conductive surface states are robust to non-
magnetic disorder and defects.

In addition to three-dimensional TIs, two-dimensional TIs
exist. Analogously to the three-dimensional case, a two-
dimensional TI has an insulating interior. However, instead of a
conducting surface state, one-dimensional metallic states
described by Dirac lines occur at the crystal edges [63, 64]. These
edge modes exhibit helical behavior, i.e. spin-momentum locking
in counter-propagating modes at the edge of the crystal (see
central panel of Fig.1). In this quantum channel, impurity or
lattice vibration-induced scattering of a mode is prevented since
back-propagating channels with identical spin are absent (i.e. time
reversal symmetry (TRS) is respected). Backscattering can only
occur in combination with a spin flip, where the red mode
converts into the blue mode, or vice versa (see Fig. 1, nanocrystal
schematic). The energy-momentum dispersion of the surface state
may depend on the atomic registry of the surface [65] or edge
[66]. Two-dimensional TTs are commonly referred to as quantum
spin Hall insulators (QSHI) due to the analogy with the quantum
Hall effect, discovered in the 1980’s [46,67—69]. Also for two-
dimensional materials, a topological Z, invariant can be obtained
from the band structure. The quantum spin Hall effect generalizes
the quantum Hall effect for spinful systems, in which the role of
the magnetic field is replaced by spin-orbit coupling such that TRS
is respected. This effect was first predicted for two-dimensional
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Figure1 Schematic band diagram of a trivial (non-topological) insulator and of a two-dimensional quantum spin Hall insulator with helical edge states. Top-right:
the band scheme of the valence- and conduction band of a trivial insulator (such as CdSe nanoplatelets). Top-left: band scheme of Bi,Se; as a quantum spin Hall
insulator in which the valence and conduction bands are inverted and mixed (corresponding to the interior of a topological insulator). Close to the edge of a
topological crystal, a pair of helical states (red: spin down, propagation clockwise; blue: spin up, propagation counter-clockwise) connect the valence and conduction

band, see central band structure.

materials with a honeycomb geometry [64] (silicene, germanene,
stanene) and for two-dimensional zinc blende HgTe quantum
wells (thicker than 6 nm) sandwiched between CdTe layers [58].
Experimentally, the first results were reported for the HgTe/CdTe
quantum well system. It was shown that edge states exist with a
quantized conductance of 2¢%/h [70, 71]. Below, we will discuss the
case of Bi,Se;, for which we have studied the transition from a
three-dimensional to a two-dimensional topological insulator,
both experimentally and theoretically.

In 2011 a different class of TIs was identified, namely that of the
topological crystalline insulators (TCIs) [72]. In these materials,
the point group of the crystal is explicitly included in the
topological classification and band inversion is related to
symmetries in the lattice that have direct consequences on the
band structure [72-76]. The resulting conducting states in TCIs
are thus mainly protected by the crystal symmetry (e.g. inversion
and mirror symmetry). Since crystal symmetries are easily broken,
TClIs only exhibit conducting states on highly symmetric surfaces.
The requirement that the symmetry must be preserved in the
surface layer makes this type of non-trivial topology vulnerable to
distortions [77-79]. A well-studied class are crystals with a rock-
salt lattice, such as SnTe [80—82] and Pb,Sn,_,Se/Te [83-91].

4 Devices based on topological insulators

As outlined in the previous section, the surface states of
topological (crystalline) insulators result in robust, spin-polarized

conduction. A 3D topological insulator has 2D conductive surface
states, while a 2D topological insulator or quantum spin Hall
insulator has 1D helical edge channels. In topological crystalline
insulators, protected surface states only exist on high symmetry
surfaces. These materials might find their use in a variety of
electronic applications [92]. In general, the robust and
dissipationless conduction may be of use in the development of
devices that rely on surface conduction, such as transistors with
non-backscattering surface-state transport channels or sensors.
The development of such devices will require accurate surface
engineering and material design in order to maximize the surface
conductance. For instance, in Bi,Se;, the bulk conductance is often
enhanced by inherent n-doping, which makes the contribution of
the surface states to the overall conduction difficult to characterize
[93-97]. Tuning of the Fermi level to ensure its location within the
bulk bandgap, for example by doping or gating, is essential to
ensure a surface-state dominated conduction and thus to prevent
energy dissipation [60,95,98-103]. Moreover, as each surface
channel will contribute a quantized conductance of &/h [57], n
parallel helical channels are needed to increase the conductance to
ne’/h, which will require both helical edge states of limited width
(<20 nm), as well as the best of lithography and surface chemistry.
One major application of topological insulators is in the field of
thermoelectric materials. Many well-known thermoelectric
materials, such as Bi,Se; and BiSb, were only later identified as
topological insulators. Due to this discovery, recent research has
focused on the effects of surface state (hybridization) and edge
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states on the thermoelectric performance of TIs, which is
characterized by the dimensionless figure of merit ZT = 0S*T/x
[104-107]. Here, o is the electrical conductivity, S is the Seebeck
coefficient, T is the absolute temperature, and « is the thermal
conductivity. This formula shows how the high surface state
conductivity of a TI could enhance thermoelectric performance.
However, due to the curious interplay between surface states and
bulk states, the exact way in which the two contribute to the
thermoelectric performance is not trivial [108,109]. It has also
been shown that the reduction of bismuth chalcogenides to the
nanoscale may enhance their figure of merit by effectively
reducing the thermal conductivity x [110-112]. However,
especially at the nanoscale, where hybridization effects start to play
a role, many questions regarding the influence and interaction of
bulk and surface states remain. For example, theoretical
calculations have shown that the hybridization-induced gap that
exists in the 2D limit could be tuned by adjusting the film
thickness to effectively control the figure of merit [113]. The
improvement of ZT by harnessing the topological properties of
TIs remains an active area of research [114].

In addition to the use of topological insulator materials in
thermoelectric devices, there are other, more exotic applications
for these materials that are still in their infancy. For 2D TIs for
instance, the robust helical channels should theoretically result in
dissipationless electron transport. The helical modes provide direct
access to direction-filtered spin channels (without the application
of a magnetic field) making such TIs promising candidates in the
field of spintronics. Experimental evidence for the existence of
such helical channels has been presented [66,70,115,116].
Furthermore, since the publication of the seminal work by Fu,
Liang, and Kane (2008) [117], there has been ongoing research
towards the experimental realization and detection of Majorana
Zero Modes (MZMs), which could form the basis for topological
qubits [117-125]. MZMs are quasiparticle states at zero energy
that are expected show non-Abelian statistics, which is
advantageous for quantum processing. These modes are predicted
to occur at interfaces between topological insulators and
superconductors [117]. Because of their topological origin, the
quantum states depends on the global properties of the system
rather than local perturbations, which should make them highly
resistant to local sources of noise and error.

Despite the promising theoretical and experimental results,
several challenges must be addressed to realize TI-based devices
[92]. Besides the practicalities of device preparation, such as the
growth of highly crystalline and functionalized materials with
specific, well-tuned dimensions, there are still many open
questions regarding the fundamental science behind topological
insulators. As is the case for existing electronics, it is likely that TIs
will be used on a nanometer scale. Because of this, investigation
into the robustness of edge/surface states in T(C)Is with finite
dimensions is required. Here, we will show how colloidal
nanocrystals can be used for this purpose. Colloidal, solvent-based
synthesis routes provide an unparalleled amount of freedom in the
synthesis. This freedom can be used to obtain specific types of
colloidal topological insulators with properties of interest, such as
doped structures, core/shell structures, or colloids of various
dimensions and shapes. As an example, we will present
nanoplatelets of the bismuth-chalcogenide family as a model
system to study the change in topological character when going
from three to two dimensions. We emphasize that the finite lateral
dimensions of two-dimensional Bi,Se; in the shape of finite-sized
nanoplatelets is a great asset in fundamental research. We will also
introduce colloidal two-dimensional sheets of other chemical
families that have been identified as TCIs. The dependence of the
topological properties of TCIs on their crystal structure provides
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additional flexibility that could benefit device design. Hence, TCI
nanocrystals are important for studying how lattice distortions,
symmetry, and dimensions impact topological properties. We will
see that colloidal nanocrystals have important assets (but also
drawbacks) with respect to MBE grown two-dimensional crystals.

5 Finite-size Bi,Se; nanoplatelets as a model
system to study (protected) edge states

In the last decade, many three-dimensional topological materials
were grown by gas-phase deposition techniques, chemical vapor
deposition and molecular beam epitaxy. The challenge is to obtain
materials with a homogeneous thickness (large surface terraces,
minor number of surface steps) and well-defined crystal-shape. In
three-dimensional materials, the energy-momentum-spin relation
of the surface states can be characterized by spin-resolved ARPES
[126—-128], providing a detailed picture of the filled valence bands
and Dirac cone up to the Fermi-level However, in two-
dimensional QSHIs, edge states are more difficult to characterize.
Characterization requires local scanning tunneling microscopy
and spectroscopy on finite-sized crystals (i.e. with a size that is
finite with respect to the scanning distances possible in a scanning
tunneling microscope (STM)), with preferably a homogeneous
thickness and a well-defined edge. Signatures of edge states were
reported at surface steps of crystals grown by gas-phase deposition
methods [129-132]. However, the measurement of a true edge
state has only been possible recently, in Bi,Se; nanoplatelets [66].

Bi,Se; is a layered material with rhombohedral crystal structure
consisting of (Se-Bi-Se-Bi-Se) layers called quintuple layers (QLs),
separated by a van der Waals gap. Bi,Se; crystals of > 6 QLs and
large lateral dimensions can be considered as three-dimensional
topological insulators with gapless surface states, while below
6 QLs, ARPES results have shown that hybridization of the surface
states leads to the opening of a gap [133]. Up until recently it was
unsure what exactly happens to the topological surface states when
reducing the thickness of a 3D TI to make it two dimensional: is
the resulting gap in the interior of the two-dimensional system still
inverted and do we find a two-dimensional QSHI? Is there a one-
dimensional quantum channel at the edge (see Fig. 1)?

Colloidal Bi,Se; nanoplatelets have several assets that render
them a valuable model system in this investigation [66]. First of all,
the nanocrystals are self-standing and can be deposited on a
substrate of choice for electrical scanning probe microscopy and
spectroscopy, or even to prepare electrical devices. Secondly, the
thickness of each platelet is uniform over the entire platelet, hence
surface steps are absent and the edge termination of the two-
dimensional crystal is well-defined (see Fig. 2). Thirdly, with lateral
dimensions in the 100-200 nm range, the platelets can be
classified as genuinely two-dimensional (ie. there is no lateral
confinement) and at the same time their finite dimensions allow
scanning tunneling spectroscopy to investigate the interior of the
crystal and the edge. Hence, all conditions are met that enable us
to relate the insulating properties of the interior to the presence or
absence of a quantum channel at the edge of the crystal.

Several papers have reported on the wet-chemical synthesis of
Bi,Se; nanoplatelets, which may have a reduced number of QLs
(< 10) and lateral sizes in the 10 to 1000 nm range [94, 110,
134-147]. To control the thickness of the platelets (in unit number
of QLs) together with the lateral dimensions of the platelets, we
developed a hot injection method (to be published elsewhere). We
were able to synthesize hexagonal Bi,Se; platelets with a
reasonably controlled thickness, i.e. the targeted number of QLs
between 1 and 6 with an uncertainty of 1 QL, and lateral
dimensions in the 100 nm range. Figure 2 shows the structural
characterization of these platelets.
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Figure2 Structural characterization of colloidal Bi,Se; nanoplatelets prepared by a hot-injection method. (a) Transmission electron microscopy (TEM) image of an
extract from a platelet suspension showing hexagonal platelets with a diagonal of approximately 150 nm. (b) High-angle annular dark-field scanning TEM (HAADEF-
STEM) image of the edge-corner region showing a slightly disordered edge region of 1 nm in width, and a crystalline (thombohedral) crystal structure in the interior.
(c) Example of an atomic force microscopy (AFM) picture used to measure the height and lateral dimensions of 700 platelets. (d) Diagrams of the distribution function
of (left) the lateral size (cornet-to-corner diagonal), and (right) thickness (AFM height) of several batches of Bi,Se; nanoplatelets. Images adapted with permission from
Ref. [66], © Moes, J. R. et al. 2024. Further permissions related to the material excerpted should be directed to the ACS.
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Figure3 Characterization of the electronic structure of Bi,Se; platelets, 4 QLs in thickness, with scanning tunneling microscopy and spectroscopy. (a) Height
determination a platelet on a gold (111) surface by STM topography: the STM height difference of 4 nm shows that the platelet has a uniform thickness of 4 quintuple
layers. (b) dI/dV spectrum, ie., LDOS(Ex,y). Blue spectrum: LDOS(E,x,y) averaged over 25 positions of the blue line (inset) reflecting the density of states of the
interior of the platelet. The blue shaded region represents the standard deviation. Red spectrum: the LDOS(E,x,y) averaged over 5 positions over the red line (inset)
presenting the density of states at the edge. The red shaded region represents the standard deviation. (c) Topographic image and LDOS(x,y) map at the edge of a
second platelet of 4 QLs in thickness. For the map, a bias of —0.39 V was used. This map clearly shows the presence of a ~ 10 nm wide state localized at the edge.
Images adapted with permission from Ref. [66], © Moes, J. R. et al. 2024. Further permissions related to the material excerpted should be directed to the ACS.
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The method to deposit platelets on a gold(111) substrate and
prepare the sample for reliable scanning tunneling microscopy
and spectroscopy is described elsewhere [66]. Here, we should
mention that it is far from trivial to transfer wet-chemically
prepared nanocrystals into the ultra-high vacuum of an STM and
obtain the standards of surface cleanliness to allow reliable
microscopy and spectroscopy [148—150]. The thickness of a given
platelet under investigation is measured from the microscopic
height difference with the gold substrate, see Fig.3(a). With
cryogenic tunneling spectroscopy, we measured the dI/dV vs. V
spectrum (I is the tunneling current between tip and sample, V is
the bias applied between the tip and the sample), which can be
approximated as the local density of electronic states LDOS(E,x,y)
[151]. For each platelet that we investigated, we measured the
LDOS(Ex,y) of the interior and edge regions. Results for two
platelets, both with a thickness of 4 QLs, are presented in Fig. 3(b).
In the interior of the crystal (blue line in inset, blue spectrum), this
platelet shows the same LDOS(E) as an MBE grown Bi,Se; crystal
[148-150]. This holds more generally for platelets in the 2-6 QLs
thickness region. Below —0.5 V, an increasing LDOS(E) is
observed, reflecting the valence bands at negative bias. Between
-0.5 and 0 V, there is a “band-gap” region with low LDOS(E),
followed by a region of increasing LDOS(E) reflecting the
conduction bands. Interestingly, the spectrum changes abruptly
when the tip approaches the edge of the nanocrystal at the last
10 nm from the boundary (Fig. 3(b) inset red line, and red dI/dV
vs. V spectrum). In this edge region of about 10 nm in width, the
LDOS(E) shows a clear relative increase in the band-gap region.
Indeed, when the LDOS(x,y) is mapped over the entire crystal at a
given voltage in this range, a 10 nm wide edge region with
enhanced LDOS(x,y) emerges, see Figs. 3(c). These data provide a
strong indication for the presence of quantum channel at the edge.
We reproducibly observed such a channel for nanoplatelets of 4, 5,
and 6 QLs in thickness [66], while the channel was absent in
platelets of 1, 2 QLs. In the case of platelets consisting of 3 QLs,
about half of the platelets showed (weaker) features that may point
to the presence of an edge state.

As mentioned previously, helical edge modes in TIs are
protected by TRS. Theoretically, a magnetic field applied
perpendicular to a Bi,Se; platelet breaks TRS, which should then
impede the quantum spin Hall effect. However, in other QSHIs, it
was found that the edge states only deteriorate at high magnetic
fields (> 8 T) [152-156]. Hence, even at magnetic fields up to
10 T, the impact of the combined Zeeman effect and Lorentz force

4 QL
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'
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are too weak to destroy the quantum spin Hall channel at the edge
of these materials. For Bi,Se; platelets (4-6 QLs), we observed only
small quantitative changes in the LDOS(E,x,y) under a magnetic
field up to 5 T [66]. In addition to applying a magnetic field, we
investigated what happens to the edge states when magnetic atoms
are present on the Bi,Se; platelets by depositing Mn ions on the
sample. The results are presented in Fig. 4 for platelets of 4 and
5 QLs. In general, we observe that the edge state is spatially less
uniform in intensity, with clear intensity modulations (see 4 QL
platelets). We tentatively interpret these modulations as being
interfering forward and backscattered modes, although the lack of
atomic resolution prevents us from proving the presence and
position of Mn atoms in an independent way. When twice as
much Mn is deposited, the edge state cannot be observed anymore
(see 5 QL platelet). The influence of magnetic adatoms is better
studied in materials prepared under ultra-high vacuum (e.g. in the
STM), where magnetic adatoms can be visualized owing to the
atomic resolution. Thus far, this level of control has been rare,
although Jack et al, reported the quasi-particle interference in
topological propagating states on a double layer of Bi by a
magnetic Fe-cluster [157].

To better understand the nature of the observed edge states, we
performed simulations on two levels. An 8-band k-p continuum
model provides Z, invariants showing that two-dimensional Bi,Se,
with a thickness of 3-5 QLs is a QSHI. The ab-initio DFT
calculation (with full atomic relaxation) suggests that 2D Bi,Se; of
4-6 QLs is non-trivial. This slight difference should not be taken
too strictly; the ab-initio simulations show that the protecting
inverted gap is rather small (about 50 meV), while atomic strain
can result in a phase transition from topological to trivial, or the
other way around [66]. Furthermore, both models show the
existence of helical edge states with spin-momentum locking, with
the width of the edge state being about 8 nm, in excellent
agreement with the experimental results. In addition, the DFT
simulations show that the presence or absence of topological edge
states does not depend on the crystallographic termination, while
the precise energy-momentum dispersion relation is specific
for a given crystallographic termination of the Bi,Se; crystal.
Further research should focus on the electron-electron
interactions in such systems, as this may affect surface or edge
conductivity [158, 159].

The results presented in this section serve as an example of how
colloidal nanocrystals are useful model systems to investigate
topological insulators. The Sb,X; and Bi,X; families (where X =S,
Se, Te), along with compounds having mixed stoichiometry, all

5QL

Figure4 Effect of magnetic Mn atoms on the edge state observed on Bi,Se; platelets of 4 and 5 QLs in thickness. After deposition of the platelets on a gold(111)
sample, a dose of Mn atoms was deposited on the sample. Due to the lack of atomic resolution, the Mn atoms are not visible. (a) The density of states LDOS(E,x,y)
measured in the interior of the platelet (blue) at 30 positions over the blue line with the shade as standard deviation, and at the edge (red) measured over 7 positions on
the red line, reflecting an edge state in the last 10 nm from the edge. The LDOS(x,y) map taken at a bias of —0.4 V shows a 10 nm wide edge state with intensity
modulations, likely reflecting back-forward mode interference due to scattering of the edge electrons with magnetic Mn. (b) LDOS(x,y) map taken at a bias of 0.4 V
for a 5 QL platelet after a second dose of Mn atoms was deposited on the sample. The edge states appear more heavily deteriorated.
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Figure5 TEM image of Bi,Te; nanoplatelets synthesized with a wet-chemical
method (as described in Ref. [163]).

share a similar layered (van der Waals) structure and comparable
band structures to Bi,Se; [56]. In the heavier members of these
families, such as Bi,Te; and Sb,Te;, spin-orbit effects induce band
inversion and non-trivial topology. Therefore, similar to Bi,Se;, the
assets of wet chemical preparation and colloidal science can aid in
our understanding of the topological properties in these systems.
Appropriate synthesis methods for various compounds have
already been reported in the literature [141,160-163]. For
example, in Fig. 5, we show Bi,Te; nanoplatelets with lateral
dimensions in the 1-2 pum range. These platelets can also be used
to study the transition from a three-dimensional to a two-
dimensional TI. To be able to perform such a study, better control
over the thickness of the platelets is required.

6 Topological crystalline insulators

As mentioned previously, topological crystalline insulators present
a different class of topological materials in which the protected
conductive surface states strongly depend on the crystal symmetry.
This adds a layer of complexity and richness to their topological
classification and opens new avenues for theoretical and
experimental research. SnTe is a key example of a TCI [76].
Experimentally, the presence/absence of the Dirac-type states on
crystal surfaces has been investigated with ARPES, cryogenic
scanning tunneling spectroscopy, Landau level spectroscopy, IR
reflection  spectroscopy, and transport measurements [89,
164-175]. The signatures of one-dimensional quantum channels
have been observed with cryogenic scanning tunneling
miscorscopy/spectroscopy [90] and discussed on a theoretical
basis [176].

The simple cubic rock-salt lattice of SnTe makes it a cousin to
the trivial insulator family of PbX (X = S, Se, Te) nanocrystals,
which have been extensively investigated in colloidal nanoscience
[177-184]. In such rock-salt crystals, the (100) mixed Metal/X
surfaces are the most stable. Hence, the nanocrystals have the
propensity to grow in a cubic shape that displays six (100)-type
facets, with truncations of the eight edges displaying smaller (110)
facets, and at the corner points revealing (111) facets (Metal or X
terminated). This is driven by minimizing the overall surface, edge
and point energy, although the crystal shape is very sensitive to the
ligand chemistry of the nanocrystals [185]. The surface and ligand
chemistry has been extensively investigated and fine-tuned for
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PbX nanocrystals, both to obtain electronically passivated surfaces
and/or use the nanocrystals to form superlattices by assembly and
oriented attachment [29, 30, 186—191]. The ionic nature of the
PbX family crystals also allows for cationic exchange [192-199]. In
this way, new types of nanocrystals and superlattices can be
obtained difficult to get by direct synthesis.

From the electronic perspective, the class of SnX and PbX (X =
S, Se, Te) materials are also similar. Their small (range 100 meV)
fundamental gaps are located at the 4 L-points in the Brillouin
zone (73,76, 180, 181,200, 201]. Intervalley coupling results in a
breaking of the degeneracy of the valence and conduction bands.
As the effective carrier mass in both the valence- and conduction
bands are small, the effects of particle-wave confinement are
considerable and the bands can be shifted from their bulk value to
values around 1 eV by reducing the nanocrystal size [177, 202,
203]. Opto-electronic applications include IR detectors, IR lasers
and eventually solar cells [204-206].

Despite their structural and electronic similarities, SnTe is a TCI
while PbTe and SnSe are trivial insulators [207-209]. The
topological properties of SnTe are specifically related to its mirror
symmetry. Although this mirror symmetry is a necessary
condition, it is clearly not sufficient to induce a band inversion.
Based on first-principles calculations, it was found that in PbTe,
the conduction and valence bands derive primarily from the p-
orbitals of Pb and Te atoms respectively, which characterizes PbTe
as a trivial insulator. In SnTe, however, the band structure is
inverted at the L points in the Brillouin zone, meaning that the
conduction band edge originates from Te, while the valence band
edge derives from Sn. This corresponds to an inverted band
structure, where the effective mass becomes negative [76].
Interestingly, when going from PbTe to SnTe, Pb, SnTe
materials show a trivial-to-TCI phase transition when x is raised
above 0.25 [74, 83, 84, 89, 166].

In SnTe, crystal mirror symmetry protects the surface states on
surfaces that are symmetric about the {110} mirror planes, e.g.
planes with Miller indices {hhk}. Figure 6(a) shows an atomic
schematic of the rock-salt lattice (as eg. found for of PbSe
nanocrystals [185]) with indication of the (100) (110) and (111)
facets, and a mirror plane along the [110] direction drawn in the
(100) plane. For rock-salt crystals, the {100} family of planes have
the lowest surface energy and are thus likely to be dominant at the
surface [210]. Figure 6(b) shows how the topological properties of
SnTe are related to its structural symmetries on the {100} surface.
The image shows the truncated octahedron Brillouin zone, with L
points at the center of each hexagonal face and X points at the
center of each square face. The I' point is indicated with a star. By
projecting the L-points on the (100) family of lattice planes,
indicated with arrows, two L points are projected to the same
momentum point X, or X,. This results in an interaction that
creates a pair of Dirac cones shifted slightly away from X to create
different types of topological surface states with an unusual band
dispersion and spin texture [76, 81, 83, 84]. For the (111) surface,
the L points all project onto a different momentum, and thus do
not interact.

In contrast to topology induced by spin-orbit coupling, where a
bulk-boundary connection results in a Dirac state at the surface or
edge independent of the atomic configuration, in TCIs the atomic
symmetry at the surfaces is critical for the observation of non-
trivial topology [80, 208, 209]. For instance, it becomes clear from
Fig. 6(a) that the mirror symmetry at the (100) rock-salt surface
breaks down for specific atomic distortions, an effect which may
result in an inverse TCI - trivial transition [79]. We note that
random atomic displacements can be considered as averaged
disorder, which does not break mirror symmetry. However, the
precise atomic registry of the displayed surfaces, sometimes
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Figure6 Rock-salt lattice with sigh-symmetry surfaces frequently observed in crystalline topological crystalline insulators such as SnTe. (a) Model of a (nano)crystal
with the most stable (lowest energy) family of (100) planes. Truncations of the edges result in the (110) family of planes, while truncation of the corners result in higher-
energy (111) planes. In colloidal nanocrystals, the higher-energy facets are strongly coordinated by organic ligands, atomic distortion can lower the symmetry of these
surfaces. The schematic in grey shows a (100) plane with a dashed mirror symmetry line. Atomic distortions at the surface (red arrows) can break the mirror symmetry
in the plane. (b) Face-centered-cubic Brillouin zone inspired by Ref. [76], © Springer Nature Limited 2012. The L points are given in black, the X points in green, and
the T point is indicated with a star. The projection of the L points onto the (100) surface is shown with blue arrows, yielding four Dirac points located on the four

equivalent T-X lines (only visualized for two cases due to symmetry).

Figure7 Wet chemical synthesis of flat SnTe nanosheets. (a) Transmission electron microscopy (TEM) image of SnTe sheets of about 10-100 nm in thickness. The
crystal shape points to the top and bottom being (100) type of surfaces of the rock-salt lattice. (b) High resolution TEM image showing the atomic rows in the <100>
viewing direction, with a 0.32 nm distance between the atom columns (derived from the FFT), confirming that this is the (100) family. The schematic in (c) shows the

orientation and crystal structure of the synthesized sheets.

affected by (ligand) surface chemistry, is critical [211]. For the TCI
SnTe, this has resulted in crystal shape and surface engineering
with the aim to form anisotropic wires, ribbons and plates that
display microsized (001) surfaces with protected Dirac-type
surface states [167,208,209,212-216]. As an example, we show
SnTe crystals that have been prepared by wet-chemical synthesis
(the synthesis method will be detailed elsewhere). Figure 7(a)
shows, besides a small amount of small cubic crystals, large
crystalline SnTe sheets. The high resolution TEM image and
corresponding Fast Fourier Transform (FFT) in Fig. 7(b) show
that the top and bottom surface are (100) terminated (shown in
Fig. 7(c)), and should therefore display Dirac-type surface states if
the surface is not distorted. It will be of strong interest to
investigate these surface states and their dependence on the
structural symmetries and sheet thickness. If the sheets can be
prepared thin enough, will this induce a gapped surface state,
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resulting in a two-dimensional TCI with one dimensional
quantum states at the edge? Considering the proof-of-concept
experiments involving Bi,Se; described above, a strong chemical
expertise may certainly aid in exploring this hypothesis. The
preparation of mixed Pb,Sn, ,Te/Se crystals by cation exchange or
one-pot colloidal synthesis routes also presents an interesting
approach for the exploration of the trivial to nontrivial phase
transition in TCIs [217, 218].

7 What is next?

Despite being over a decade old, the field of topological insulators
is still in its infancy, especially with respect to practical
applications. In this review, we have highlighted how colloidal
nanocrystals could advance the field from a fundamental
perspective. We also note that the flexibility of colloidal synthesis
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procedures allows unparalleled freedom of material design. The
processability of colloidal nanocrystals may therefore be of use for
device fabrication. Although current material design and device
fabrication mainly revolves around thin film growth techniques,
nanocrystals are also emerging as promising candidates for
applications such as thermoelectric devices [219].

Finally, we wish to emphasize that to address the challenges
outlined in this review and to solve upcoming issues in device
design, an interdisciplinary approach will be required. Over four
decades of rigorous research in colloidal science has resulted in
considerable control over crystal dimensions, surface properties,
nanocrystal assembly and spatially-resolved deposition; expertise
from which the field of topological materials could benefit. With
chemists guiding material design and optimization, physicists
providing insights into the origin of topological effects, and
materials scientists bridging the gap between fundamental studies
and practical applications, significant advancements can be made
in the field of quantum materials.
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